Acknowledgement
This study was supported by the Basic Science Research Program through the National Research Foundation of Korea grant [NRF-2020R1A2C100550700] funded by the Ministry of Education, Science and Technology, Republic of Korea.
References
- Food and Agriculture Organization of the United Nations [Internet]. Rome (Italy): FAOSTAT; 2021 [cited 2021 November 3]. Available from: http://www.fao.org/faostat/en/#data/QC/
- Lee NH, Fu T, Shin JH, et al. The small GTPase CsRAC1 is important for fungal development and pepper anthracnose in Colletotrichum scovillei. Plant Pathol J. 2021;37(6):607-618. https://doi.org/10.5423/PPJ.OA.09.2021.0140
- Forster H, Adaskaveg JE. Identification of subpopulations of Colletotrichum acutatum and epidemiology of almond anthracnose in California. Phytopathology. 1999;89(11):1056-1065. https://doi.org/10.1094/PHYTO.1999.89.11.1056
- Giacomin RM, de Fatima Ruas C, Moreira AFP, et al. Inheritance of anthracnose resistance (Colletotrichum scovillei) in ripe and unripe Capsicum annuum fruits. J Phytopathol. 2020;168(3):184-192. https://doi.org/10.1111/jph.12880
- Saxena A, Raghuwanshi R, Gupta VK, et al. Chilli anthracnose: the epidemiology and management. Front Microbiol. 2016;7:1527.
- Fu T, Han JH, Shin JH, et al. Homeobox transcription factors are required for fungal development and the suppression of host defense mechanisms in the Colletotrichum scovillei-pepper pathosystem. mBio. 2021;12(4):e01620.
- Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ. 2005;12(S2):1542-1552. https://doi.org/10.1038/sj.cdd.4401765
- Pollack JK, Harris SD, Marten MR. Autophagy in filamentous fungi. Fungal Genet Biol. 2009;46(1):1-8. https://doi.org/10.1016/j.fgb.2008.10.010
- Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring autophagy from yeast to human. Autophagy. 2007;3(3):181-206. https://doi.org/10.4161/auto.3678
- Pinan-Lucarre B, Balguerie A, Clave C. Accelerated cell death in Podospora autophagy mutants. Eukaryot Cell. 2005;4(11):1765-1774. https://doi.org/10.1128/EC.4.11.1765-1774.2005
- Pollack JK, Li ZJ, Marten MR. Fungal mycelia show lag time before re-growth on endogenous carbon. Biotechnol Bioeng. 2008;100(3):458-465. https://doi.org/10.1002/bit.21779
- Reggiori F, Klionsky DJ. Autophagy in the eukaryotic cell. Eukaryot Cell. 2002;1(1):11-21. https://doi.org/10.1128/EC.01.1.11-21.2002
- Asakura M, Ninomiya S, Sugimoto M, et al. Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare. Plant Cell. 2009;21(4):1291-1304. https://doi.org/10.1105/tpc.108.060996
- Deng Y, Qu Z, Naqvi NI. Role of macroautophagy in nutrient homeostasis during fungal development and pathogenesis. Cells. 2012;1(3):449-463. https://doi.org/10.3390/cells1030449
- Kershaw MJ, Talbot NJ. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc Natl Acad Sci USA. 2009;106(37):15967-15972. https://doi.org/10.1073/pnas.0901477106
- Hirata E, Ohya Y, Suzuki K. Atg4 plays an important role in efficient expansion of autophagic isolation membranes by cleaving lipidated Atg8 in Saccharomyces cerevisiae. PLoS One. 2017;12(7):e0181047.
- Nakatogawa H, Suzuki K, Kamada Y, et al. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10(7):458-467. https://doi.org/10.1038/nrm2708
- Deng YZ, Ramos-Pamplona M, Naqvi NI. Autophagy-assisted glycogen catabolism regulates asexual differentiation in Magnaporthe oryzae. Autophagy. 2009;5(1):33-43. https://doi.org/10.4161/auto.5.1.7175
- Yu JH, Hamari Z, Han KH, et al. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol. 2004;41(11):973-981. https://doi.org/10.1016/j.fgb.2004.08.001
- Choi J, Kim Y, Kim S, et al. MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet Biol. 2009;46(3):243-254. https://doi.org/10.1016/j.fgb.2008.11.010
- Kim S, Park SY, Kim KS, et al. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. PLOS Genet. 2009;5(12):e1000757.
- Sweigard JA, Chumley FG, Valent B. Cloning and analysis of CUT1, a cutinase gene from Magnaporthe grisea. Mol Gen Genet. 1992;232(2):174-182. https://doi.org/10.1007/BF00279994
- Shin JH, Han JH, Park HH, et al. Optimization of polyethylene glycol-mediated transformation of the pepper anthracnose pathogen Colletotrichum scovillei to develop an applied genomics approach. Plant Pathol J. 2019;35(6):575-584. https://doi.org/10.5423/PPJ.OA.06.2019.0171
- Wang JY, Wu XY, Zhang Z, et al. Fluorescent co-localization of PTS1 and PTS2 and its application in analysis of the gene function and the peroxisomal dynamic in Magnaporthe oryzae. J Zhejiang Univ Sci B. 2008;9(10):802-810. https://doi.org/10.1631/jzus.B0860001
- Chi MH, Park SY, Lee YH. A quick and safe method for fungal DNA extraction. Plant Pathol J. 2009;25(1):108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
- Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press.
- Han JH, Chon JK, Ahn JH, et al. Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea. Genom Data. 2016;8:45-46.
- Kim JO, Choi KY, Han JH, et al. The complete mitochondrial genome sequence of the ascomycete plant pathogen Colletotrichum acutatum. Mitochondrial DNA A DNA Mapp Seq Anal. 2016;27(6):4547-4548.
- Bianchi DE, Turian G. Lipid content of conidia of Neurospora crassa. Nature. 1967;214(5095):1344-1345. https://doi.org/10.1038/2141344a0
- Daryaei A. Conidium "fitness" in Trichoderma [dissertation]. Oxford (PA): Lincoln University; 2014.
- Fu T, Shin JH, Lee NH, et al. Mitogen-activated protein kinase CsPMK1 is essential for pepper fruit anthracnose by Colletotrichum scovillei. Front Microbiol. 2022;13:770119.
- Jeon J, Rho H, Kim S, et al. Role of MoAND1-mediated nuclear positioning in morphogenesis and pathogenicity in the rice blast fungus, Magnaporthe oryzae. Fungal Genet Biol. 2014;69:43-51. https://doi.org/10.1016/j.fgb.2014.05.002
- Park J, Kong S, Kim S, et al. Roles of forkhead-box transcription factors in controlling development, pathogenicity, and stress response in Magnaporthe oryzae. Plant Pathol J. 2014;30(2):136-150. https://doi.org/10.5423/PPJ.OA.02.2014.0018
- Sun CB, Suresh A, Deng YZ, et al. A multidrug resistance transporter in magnaporthe is required for host penetration and for survival during oxidative stress. Plant Cell. 2006;18(12):3686-3705.
- Liu XH, Lu JP, Zhang L, et al. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell. 2007;6(6):997-1005. https://doi.org/10.1128/EC.00011-07
- Shin JH, Fu T, Kim KS. Pex7 selectively imports PTS2 target proteins to peroxisomes and is required for anthracnose disease development in Colletotrichum scovillei. Fungal Genet Biol. 2021;157:103636.
- Fujiki Y, Matsuzono Y, Matsuzaki T, et al. Import of peroxisomal membrane proteins: the interplay of Pex3p-and Pex19p-mediated interactions. Biochim Biophys Acta. 2006;1763(12):1639-1646. https://doi.org/10.1016/j.bbamcr.2006.09.030
- Otera H, Okumoto K, Tateishi K, et al. Peroxisome targeting signal type 1 (PTS1) receptor is involved in import of both PTS1 and PTS2: studies with PEX5-defective CHO cell mutants. Mol Cell Biol. 1998;18(1):388-399. https://doi.org/10.1128/MCB.18.1.388