DOI QR코드

DOI QR Code

Virulence Reduction and Differing Regulation of Virulence Genes in rpf Mutants of Xanthomonas oryzae pv. oryzae

  • Jeong, Kyu-Sik (Department of Plant Medicine, Chungbuk National University) ;
  • Lee, Seung-Eun (Department of Plant Medicine, Chungbuk National University) ;
  • Han, Jong-Woo (Department of Plant Medicine, Chungbuk National University) ;
  • Yang, Seung-Up (Department of Plant Medicine, Chungbuk National University) ;
  • Lee, Byoung-Moo (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Noh, Tae-Hwan (Honam Agricultural Research Institute, Rural Development Administration) ;
  • Cha, Jae-Soon (Department of Plant Medicine, Chungbuk National University)
  • Published : 2008.06.30

Abstract

To define the functions of the rpf genes in Xanthomonas oryzae pv. oryzae (Xoo), which regulates pathogenicity factors in Xanthomonas campestris pv. campestris (Xcc), marker-exchange mutants of each rpf gene were generated. When the mutants were inoculated on a susceptible cultivar, the lesion lengths caused by the rpfB, rpfC, rpfF, and rpfG mutants were significantly smaller than those caused by the wild type, whereas those caused by the rpfA, rpfD, and rpfI mutants were not. Several virulence determinants, including extracellular polysaccharide (EPS) production, xylanase production, and motility, were significantly decreased in the four mutants. However, the cellulase activity in the mutants was unchanged. Complementation of the rpfB and rpfC mutations restored the virulence and the expression of the virulence determinants. Expression analysis of 14 virulence genes revealed that the expression of genes related to EPS production (gumG and gumM), LPS (xanA, xanB, wxoD, and wxoC), phytase (phyA), xylanase (xynB), lipase (lipA), and motility (pitA) were reduced significantly in the mutants rpfB, rpfC, rpfF, and rpfG. In contrast, the expression of genes related to cellulase (eglxob, clsA), cellobiosidase (cbsA), and iron metabolism (fur) was unchanged. The results of this study clearly show that rpfB, rpfC, rpfF, and rpfG are important for the virulence of Xoo KACC10859, and that virulence genes are regulated differently by the Rpfs.

Keywords

References

  1. Barber, C. E., Tang, J. L., Feng, J. X., Pan, M. Q., Wison, T. J. G., Slater, H., Dow, J. M., Williams, P. and Daniels, M. J. 1997. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol. Microbiol. 24:556-566.
  2. Biely, P., Mislovicova, D. and Toman, R. 1988. Remazol Brilliant Blue-xylan: A soluble chrommogenic substrate for xylanases. Methods Enzymol. 160:536-542. https://doi.org/10.1016/0076-6879(88)60165-0
  3. Chatterjee, A., Cui, Y., Liu, Y., Dumenyo, K. C. and Chatterjee, A. K. 1995. Inactivation of rsmA leads to overproduction of extracellular pectinase, cellulose and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell-density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. Appl. Environ. Microbiol. 61:1959-1967.
  4. Chatterjee, S. and Sonti, R. V. 2002. rpfF mutants of Xantomonas oryzae pv. oryzae are deficient for virulence and growth under low iron conditions. Mol. Plant-Microbe Interact. 15:463-471. https://doi.org/10.1094/MPMI.2002.15.5.463
  5. Chatterjee, S., Sankaranarayanan, R. and Sonti, R. V. 2003. PhyA, a secreted protein of Xanthomonas oryzae pv. oryzae, is required for optimum virulence and growth on phytic acid as a sole phosphate source. Mol. Plant-Microbe Interact. 16:973-982. https://doi.org/10.1094/MPMI.2003.16.11.973
  6. Dharmapuri, S., Yashitola, J., Vishnupriya, M. R. and Sonti, R. V. 2001. Novel genomic locus with atypical G+C content that is required for extracellular polysaccharide production and virulence in Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 14:1335-1339. https://doi.org/10.1094/MPMI.2001.14.11.1335
  7. Dow, J. M., Crossman, L., Findlay, K., He, Y. Q., Feng, J. X. and Tang, J. L. 2003. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc. Natl. Acad. Sci. USA 100:10995-11000. https://doi.org/10.1073/pnas.1833360100
  8. Dow, J. M., Fouhy, Y., Lucey, J. F. and Ryan, R. P. 2006. The HDGYP domain, Cyclic di-GMP signaling, and bacterial virulence to plants. Mol. Plant-Microbe Interact. 19:1378-1384. https://doi.org/10.1094/MPMI-19-1378
  9. He, Y. W., Wang, C., Zhou, L., Song, H., Dow, J. M. and Zhang, L. H. 2006. Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris involved either phosphorelay or receiver domain-protein interaction. J. Biol. Chem. 281:33414-33421. https://doi.org/10.1074/jbc.M606571200
  10. Hu, J., Qian, W. and He, C. 2007. The Xanthomonas oryzae pv. oryzae eglXoB endoglucanase gene is required for virulence to rice. FEMS Microbiol. Lett. 269:273-279. https://doi.org/10.1111/j.1574-6968.2007.00638.x
  11. Jha, G., Rajeshwari, R. and Sonti, R. V. 2007. Functional interplay between two Xanthomonas oryzae pv. oryzae secretion systems in modulating virulence on rice. Mol. Plant-Microbe Interact. 20:31-40. https://doi.org/10.1094/MPMI-20-0031
  12. Kauffman, H. E., Reddy, A. K., Hsieh, S. Y. and Merca, S. D. 1973. An improved technique for evaluation of resistance of rice varieties to Xanthomonas oryzae. Plant Dis. 57:537-541.
  13. Koplin, R., Arnold, W., Hotte, B., Simon, R., Wang, G. and Pühler, A. 1992. Genetics of xanthan production in Xanthomonas campestris: the xanA and xanB gene are involved in UDP-glucose and GDP-mannose biosynthesis. J. Bacteriol. 174:191-199. https://doi.org/10.1128/jb.174.1.191-199.1992
  14. Labes, M., Puler, A. and Simon, R. 1990. A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for gram-negative bacteria. Gene 8:37-46.
  15. Lee, B. M., Park, Y. J., Park, D. S., Kang, H. W. and Hahn, J. H. 2004 Insertional transposon mutagenesis of Xanthomonas oryzae pv. oryzae KXO85 by electroporation. Plant Pathol. J. 20:229-233. https://doi.org/10.5423/PPJ.2004.20.3.229
  16. Lee, B. M., Park, Y. J., Park, D. S., Kang, H. W., Kim, J. G., Song, E. S., Park, I. C., Yoon, U. H., Hahn, J. H., Koo, B. S., Koo, G. B., Lee, H., Kim, H. S., Park, K. O., Yoon, J. H., Kim, C. H., Jung, N. H., Koh, J. S., Seo, S. J. and Go, S. J. 2005. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res. 33:577-86. https://doi.org/10.1093/nar/gki206
  17. Lee, S. E., Jeong, K. S., Han, J. U. and Cha, J. S. 2006. Comparison of rpf gene cluster in the phytopathogenic Xanthomonads including Xyllela fastidiosa. Plant Pathol. J. 22:411.
  18. Lee, S. W. and Ronald, P. C. 2006. Marker-exchange mutagenesis and complementation strategies for the gram-negative bacteria Xanthomonase oryzae pv. oryzae. Methods in Molecular Biology/Molecular Medicine, Humana Press Inc., Totowa, NJ. 11-17.
  19. Patil, P. B. and Sonti, R. V. 2004. Variation suggestive ig horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice. BMC Microbiology. 10:1-14.
  20. Rajeshwari, R., Jha, G. and Sonti. R. V. 2005. Role of an in plantaexpressed xylanase of Xanthomonas oryzae pv. oryzae in promoting virulence on rice. Mol. Plant-Microbe Interact. 18:830-837. https://doi.org/10.1094/MPMI-18-0830
  21. Ray, S. K., Rajeshwari, R. and Sonti, R. V. 2000. Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase. Mol. Plant-Microbe Interact. 13:394-401. https://doi.org/10.1094/MPMI.2000.13.4.394
  22. Ryan, R. P., Fouhy, Y., Lucey, J. F., Jing, B. L., He, Y. Q., Feng, J. X., Tang, J. L. and Dow, J. M. 2007. Cyclic di-GMP signaling in the virulence and environmental adaptation of Xanthomo nas campestris. Mol. Microbiol. 63:429-442. https://doi.org/10.1111/j.1365-2958.2006.05531.x
  23. Sambrook, J. and Russell, D. W. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
  24. Slater, H., Alvarez-Morales, A., Barber, C. E., Daniels, M. J. and Dow, J. M. 2000. A two-component system involving an HDGYP domain protein links cell-cell signaling to pathogenicity gene expression in Xanthomonas campestris. Mol. Microbiol. 38:986-1003. https://doi.org/10.1046/j.1365-2958.2000.02196.x
  25. Subramoni, S. and Sonti, R. V. 2005. Growth deficiency of a Xanthomonas oryzae pv. oryzae fur mutant in rice leaves is reduced by ascorbic acid supplementation. Mol. Plant-Microbe Interact. 18:644-651. https://doi.org/10.1094/MPMI-18-0644
  26. Sugio, A., Yang, B. and White, F. F. 2005. Characterization of the rpfC pathgenicity peninsula of Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 18:546-554. https://doi.org/10.1094/MPMI-18-0546
  27. Tang, J. L., Feng, J. X., Li, Q. Q., Wen, H. X., Zhou, D. L., Greer Wilson, T. J., Dow, J. M., J., Ma, Q. S. and Daniels, M. J. 1996. Cloning and characterization of the rpfC gene of Xanthomonas oryzae pv. oryzae: involvement in exopolysacchride production and virulence to rice. Mol. Plant-Microbe Interact. 9:664-666. https://doi.org/10.1094/MPMI-9-0664
  28. Tsuchiya, K., Mew, T. W. and Wakimot, S. 1982. Bacteriological and pathological characteristics of wild types and induced mutants of Xanthomonas campestris pv. oryzae. Phytopathology 72:43-46. https://doi.org/10.1094/Phyto-72-43
  29. Vorholter, F. J., Niehaus, K. and Pühler, A. 2001. Lipopolysaccharide biosynthesis in Xanthomonas campestris pv. campestris: a cluster of 15 genes is involved in the biosynthesis of the LPS O-antigen and the LPS core. Mol. Genet. Genome. 266:79-95. https://doi.org/10.1007/s004380100521
  30. Wang, L. H., He, Y. W., Gao, Y. F., Wu, J. E., Dong, Y. H. and He, C. Z. 2004. A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol. Microbiol. 51:903-912. https://doi.org/10.1046/j.1365-2958.2003.03883.x
  31. Yoon, K. H. and Cho, J. Y. 2006. Transcriptional analysis of the gum gene cluster from Xanthomonas oryzae pv. oryzae. Biotechnol. Lett. 1-9. https://doi.org/10.1007/s10529-005-0317-0

Cited by

  1. Antibacterial effects of volatiles produced byBacillusstrain D13 againstXanthomonas oryzaepv.oryzae 2016, https://doi.org/10.1111/mpp.12494
  2. Xanthomonas oryzae pv. oryzae RpfE Regulates Virulence and Carbon Source Utilization without Change of the DSF Production vol.29, pp.4, 2013, https://doi.org/10.5423/PPJ.OA.06.2013.0057
  3. Role of DetR in defence is critical for virulence of X anthomonas oryzae pv. oryzae vol.17, pp.4, 2016, https://doi.org/10.1111/mpp.12305
  4. Comparative Transcriptome Profiling Reveals Different Expression Patterns in Xanthomonas oryzae pv. oryzae Strains with Putative Virulence-Relevant Genes vol.8, pp.5, 2013, https://doi.org/10.1371/journal.pone.0064267
  5. Molecular and biological characterization of ϕRs551, a filamentous bacteriophage isolated from a race 3 biovar 2 strain of Ralstonia solanacearum vol.12, pp.9, 2017, https://doi.org/10.1371/journal.pone.0185034
  6. An H-NS-like protein involved in the negative regulation of hrp genes in Xanthomonas oryzae pv. oryzae vol.319, pp.1, 2011, https://doi.org/10.1111/j.1574-6968.2011.02266.x
  7. Expression of colSR Genes Increased in the rpf Mutants of Xanthomonas oryzae pv. oryzae KACC10859 vol.30, pp.3, 2014, https://doi.org/10.5423/PPJ.NT.12.2013.0122
  8. Small Protein-Mediated Quorum Sensing in a Gram-Negative Bacterium vol.6, pp.12, 2011, https://doi.org/10.1371/journal.pone.0029192
  9. The xrvA gene of Xanthomonas oryzae pv. oryzae, encoding an H-NS-like protein, regulates virulence in rice vol.155, pp.9, 2009, https://doi.org/10.1099/mic.0.028910-0
  10. The RpfB-Dependent Quorum Sensing Signal Turnover System Is Required for Adaptation and Virulence in Rice Bacterial Blight Pathogen Xanthomonas oryzae pv. oryzae vol.29, pp.3, 2016, https://doi.org/10.1094/MPMI-09-15-0206-R
  11. Thyme Oil Reduces Biofilm Formation and Impairs Virulence of Xanthomonas oryzae vol.8, 2017, https://doi.org/10.3389/fmicb.2017.01074
  12. Regulation and secretion ofXanthomonasvirulence factors vol.34, pp.2, 2010, https://doi.org/10.1111/j.1574-6976.2009.00192.x
  13. Top 10 plant pathogenic bacteria in molecular plant pathology vol.13, pp.6, 2012, https://doi.org/10.1111/j.1364-3703.2012.00804.x
  14. Phytohormone-mediated interkingdom signaling shapes the outcome of rice-Xanthomonas oryzae pv. oryzae interactions vol.15, pp.1, 2015, https://doi.org/10.1186/s12870-014-0411-3
  15. Identification and characterization of virulence factor of several Indonesian Xanthomonas oryzae pv. oryzae vol.8, pp.3, 2014, https://doi.org/10.5454/mi.8.3.3
  16. Proteomic analysis of the regulatory function of DSF-dependent quorum sensing in Xanthomonas oryzae pv. oryzicola vol.50, pp.1, 2011, https://doi.org/10.1016/j.micpath.2010.09.002
  17. Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads vol.14, pp.1, 2013, https://doi.org/10.1186/1471-2164-14-761