• 제목/요약/키워드: virulence gene

검색결과 320건 처리시간 0.024초

Functional Characterization of cAMP-Regulated Gene, CAR1, in Cryptococcus neoformans

  • Jung, Kwang-Woo;Maeng, Shin-Ae;Bahn, Yong-Sun
    • Mycobiology
    • /
    • 제38권1호
    • /
    • pp.26-32
    • /
    • 2010
  • The cyclic AMP (cAMP) pathway plays a major role in growth, sexual differentiation, and virulence factor synthesis of pathogenic fungi. In Cryptococcus neoformans, perturbation of the cAMP pathway, such as a deletion in the gene encoding adenylyl cyclase (CAC1), causes defects in the production of virulence factors, including capsule and melanin production, as well as mating. Previously, we performed a comparative transcriptome analysis of the Ras- and cAMP- pathway mutants, which revealed 163 potential cAMP-regulated genes (38 genes at a 2-fold cutoff). The present study characterized the role of one of the cAMP pathway-dependent genes (serotype A identification number CNAG_ 06576.2). The expression patterns were confirmed by Northern blot analysis and the gene was designated cAMP-regulated gene 1 (CAR1). Interestingly, deletion of CAR1 did not affect biosynthesis of any virulence factors and the mating process, unlike the cAMP-signaling deficient cac1$\Delta$ mutant. Furthermore, the car1$\Delta$ mutant exhibited wild-type levels of the stress-response phenotype against diverse environmental cues, indicating that Car1, albeit regulated by the cAMP-pathway, is not essential to confer a cAMP-dependent phenotype in C. neoformans.

시판수산물에서 분리한 Vibrio parahaemolyticus의 병원성 인자와 항균제 내성 현황 (Virulence Factors and Antimicrobial Resistance of Vibrio parahaemolyticus Isolated from Commercial Fisheries Products)

  • 이예지;김은희
    • 한국수산과학회지
    • /
    • 제52권6호
    • /
    • pp.596-604
    • /
    • 2019
  • Vibrio parahaemolyticus causes food poisoning, mainly via marine fisheries products. We investigated the virulence factors and drug resistance of V. parahaemolyticus isolated from fisheries products purchased from the Yeosu Fisheries Market. The isolates were identified using a variety of biochemical tests and the detection of toxR and hns gene. The presence of the virulence factor-encoding genes tdh and trh in the isolates was also investigated by PCR. The resistance of the isolates to 13 antibacterial agents was tested using the disc-diffusion method and carriage of β-lactamase genes and class 1 integrons by ampicillin-resistant isolates was investigated by PCR. Four of seventeen isolates identified as V. parahaemolyticus by biochemical tests produced a species-specific PCR band. Those isolates showed >98% 16S rRNA gene sequence homology with V. parahaemolyticus and only one isolate harbored the tdh gene. All of the V. parahaemolyticus isolates were resistant to ampicillin and amoxicillin; moreover, VPA0477, a class A β-lactamase gene, and class 1 integrons were detected. Therefore, V. parahaemolyticus from fisheries products represents a low risk to human health. Also, V. parahaemolyticus is likely to develop multidrug resistance because it has class 1 integrons.

대전지역의 3차 병원에서 분리된 Carbapenem 내성 Pseudomonas aeruginosa의 병독성 인자 검출 (Molecular Detection of Virulence Factors in Carbapenem-Resistant Pseudomonas aeruginosa Isolated from a Tertiary Hospital in Daejeon)

  • 조혜현
    • 대한임상검사과학회지
    • /
    • 제51권3호
    • /
    • pp.301-308
    • /
    • 2019
  • 다제내성 P. aeruginosa의 출현과 확산은 전 세계적으로 중요한 문제가 되고 있다. P. aeruginosa에 의한 발병은 일부 몇몇 세포 관련 및 세포외 병독성 인자의 생성에 기인한다. 본 연구에서는 대전지역의 3차 병원에서 분리된 carbapenem 내성 P. aeruginosa를 대상으로 병독성 인자의 분포와 항균제 내성 양상을 조사하였다. 항균제 감수성 시험은 디스크 확산법으로 확인하였고, 병독성 유전자의 분석을 위해 PCR과 염기서열분석을 수행하였다. 또한, 다제내성 P. aeruginosa의 sequence type (ST)은 multilocus sequence typing (MLST)을 통해 확인하였다. 32균주의 carbapenem 내성 P. aeruginosa 중, 14균주(43.8%)가 다제내성이었으며, 주요 ST는 ST235 (10균주, 71.4.%)임을 확인하였다. 병독성 유전자는 32균주 모두에서 확인되었고, 이 중 가장 높은 빈도로 확인된 병독성 유전자는 toxA, plcN, phzM (100.%)이었다. 또한, 32균주는 모두 8개 이상의 병독성 유전자를 가지고 있었으며, 9균주(28.1%)가 15개의 병독성 유전자를 가지고 있었다. exoU 유전자는 다제내성 P. aeruginosa 균주의 71.4%에서 확인되었다. 이러한 결과는 exoU 유전자가 다제내성 P. aeruginosa 균주의 지속성에 대한 예측 표지자가 될 수 있을 것으로 사료된다.

Deletion of the oligopeptide transporter Lmo2193 decreases the virulence of Listeria monocytogenes

  • Li, Honghuan;Qiao, Yanjie;Du, Dongdong;Wang, Jing;Ma, Xun
    • Journal of Veterinary Science
    • /
    • 제21권6호
    • /
    • pp.88.1-88.13
    • /
    • 2020
  • Background: Listeria monocytogenes is a gram-positive bacterium that causes listeriosis mainly in immunocompromised hosts. It can also cause foodborne outbreaks and has the ability to adapt to various environments. Peptide uptake in gram-positive bacteria is enabled by oligopeptide permeases (Opp) in a process that depends on ATP hydrolysis by OppD and F. Previously a putative protein Lmo2193 was predicted to be OppD, but little is known about the role of OppD in major processes of L. monocytogenes, such as growth, virulence, and biofilm formation. Objectives: To determine whether the virulence traits of L. monocytogenes are related to OppD. Methods: In this study, Lmo2193 gene deletion and complementation strains of L. monocytogenes were generated and compared with a wild-type strain for the following: adhesiveness, invasion ability, intracellular survival, proliferation, 50% lethal dose (LD50) to mice, and the amount bacteria in the mouse liver, spleen, and brain. Results: The results showed that virulence of the deletion strain was 1.34 and 0.5 orders of magnitude higher than that of the wild-type and complementation strains, respectively. The function of Lmo2193 was predicted and verified as OppD from the ATPase superfamily. Deletion of lmo2193 affected the normal growth of L. monocytogenes, reduced its virulence in cells and mice, and affected its ability to form biofilms. Conclusions: Deletion of the oligopeptide transporter Lmo2193 decreases the virulence of L. monocytogenes. These effects may be related to OppD's function, which provides a new perspective on the regulation of oligopeptide transporters in L. monocytogenes.

Upregulated expression of the cDNA fragment possibly related to the virulence of Acanthamoeba culbertsoni

  • Im, Kyung-Il;Park, Kwang-Min;Yong, Tai-Soon;Hong, Yong-Pyo;Kim, Tae-Eun
    • Parasites, Hosts and Diseases
    • /
    • 제37권4호
    • /
    • pp.257-263
    • /
    • 1999
  • Identification of the genes responsible for the recovery of virulence in brain-passaged Acanthamoeba culbertsoni was attempted via mRNA differential display polymerase chain reaction (mRNA DD-PCR) analysis. In order to identify the regulatory changes in transcription of the virulence related genes by the brain passages, mRNA DD-PCR was performed which enabled the display of differentially transcribed mRNAs after the brain passages. Through mRNA DD-PCR analysis. 96 brain-passaged amoeba specific amplicons were observed and were screened to identify the amplicons that failed to amplify in the non-brain-passaged amoeba mRNAs. Out of the 96 brain-passaged amoeba specific amplicons, 12 turned out to be amplified only from the brain-passaged amoeba mRNAs by DNA slot blot hybridization. The clone, A289C, amplified with an arbitrary primer of UBC #289 and the oligo dT$_{11}$-C primer, revealed the highest homology (49.8%) to the amino acid sequences of UPD-galactose lipid transferase of Erwinia amylovora, which is known to act as an important virulence factor. The deduced amino acid sequences of an insert DNA in clone A289C were also revealed to be similar to cpsD, which is the essential gene for the expression of type III capsule in group B streptococcus. Upregulated expression of clone A289C was verified by RNA slot blot hybridization. Similar hydrophobicity values were also observed between A289C (at residues 47-66) and the AmsG gene of E. amylovora (at residues 286-305: transmembrane domains). This result suggested that the insert of clone A289C might play the same function as galactosyl transferase controlled by the AmsG gene in E. amylovora.a.

  • PDF

Mutation in clpxoo4158 Reduces Virulence and Resistance to Oxidative Stress in Xanthomonas oryzae pv. oryzae KACC10859

  • Cho, Jung-Hee;Jeong, Kyu-Sik;Han, Jong-Woo;Kim, Woo-Jae;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • 제27권1호
    • /
    • pp.89-92
    • /
    • 2011
  • Cyclic AMP receptor-like protein (Clp), is known to be a global transcriptional regulator for the expression of virulence factors in Xanthomonas campestris pv. campestris (Xcc). Sequence analysis showed that Xanthomonas oryzae pv. oryzae (Xoo) contains a gene that is strongly homologous to the Xcc clp. In order to determine the role of the Clp homolog in Xoo, a marker exchange mutant of $clp_{xoo4158}$ was generated. Virulence and virulence factors, such as the production of cellulase, xylanase, and extracellular polysaccharides (EPS) and swarming motility were significantly decreased in the $clp_{xoo4158}$ mutant. Moreover, the mutation caused the strain to be more sensitive to hydrogen peroxide and to over-produce siderophores. Complementation of the mutant restored the mutation-related phenotypes. Expression of $clp_{xoo4158}$, assessed by reverse-transcription realtime PCR and clp promoter activity, was significantly reduced in the rpfB, rpfF, rpfC, and rpfG mutants. These results suggest that the clp homolog, $clp_{xoo4158}$, is involved in the control of virulence and resistance against oxidative stress, and that expression of the gene is controlled by RpfC and RpfG through a diffusible signal factor (DSF) signal in Xanthomonas oryzae pv. oryzae KACC10859.

Association between Beta-lactam Antibiotic Resistance and Virulence Factors in AmpC Producing Clinical Strains of P. aeruginosa

  • Dehbashi, Sanaz;Tahmasebi, Hamed;Arabestani, Mohammad Reza
    • Osong Public Health and Research Perspectives
    • /
    • 제9권6호
    • /
    • pp.325-333
    • /
    • 2018
  • Objectives: The purpose of this study was to determine the presence of IMP and OXA genes in clinical strains of Pseudomonas aeruginosa (P. aeruginosa) that are carriers of the ampC gene. Methods: In this study, 105 clinical isolates of P. aeruginosa were collected. Antibiotic resistance patterns were determined using the disk diffusion method. The strains carrying AmpC enzymes were characterized by a combination disk method. Multiplex-PCR was used to identify resistance and virulence genes, chi-square test was used to determine the relationship between variables. Results: Among 105 isolates of P. aeruginosa, the highest antibiotic resistance was to cefotaxime and aztreonam, and the least resistance was to colictin and ceftazidime. There were 49 isolates (46.66%) that showed an AmpC phenotype. In addition, the frequencies of the resistance genes were; OXA48 gene 85.2%, OXA199, 139 3.8%, OXA23 3.8%, OXA2 66.6%, OXA10 3.8%, OXA51 85.2% and OXA58 3.8%. The IMP27 gene was detected in 9 isolates (8.57%) and the IMP3.34 was detected in 11 isolates (10.47%). Other genes detected included; lasR (17.1%), lasB (18%) and lasA (26.6%). There was a significant relationship between virulence factors and the OX and IMP genes ($p{\leq}0.05$). Conclusion: The relationship between antibiotic resistance and virulence factors observed in this study could play an important role in outbreaks associated with P. aeruginosa infections.

Stress Tolerance and Virulence-Related Roles of Lipopolysaccharide in Burkholderia glumae

  • Lee, Chaeyeong;Mannaa, Mohamed;Kim, Namgyu;Kim, Juyun;Choi, Yeounju;Kim, Soo Hyun;Jung, Boknam;Lee, Hyun-Hee;Lee, Jungkwan;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제35권5호
    • /
    • pp.445-458
    • /
    • 2019
  • The lipopolysaccharide (LPS) composed of lipid A, core, and O-antigen is the fundamental constituent of the outer membrane in gram-negative bacteria. This study was conducted to investigate the roles of LPS in Burkholderia glumae, the phytopathogen causing bacterial panicle blight and seedling rot in rice. To study the roles of the core oligosaccharide (OS) and the O-antigen region, mutant strains targeting the waaC and the wbiFGHI genes were generated. The LPS profile was greatly affected by disruption of the waaC gene and slight reductions were observed in the O-antigen region following wbiFGHI deletions. The results indicated that disruption in the core OS biosynthesis-related gene, waaC, was associated with increased sensitivity to environmental stress conditions including acidic, osmotic, saline, and detergent stress, and to polymyxin B. Moreover, significant impairment in the swimming and swarming motility and attenuation of bacterial virulence to rice were also observed in the waaC-defective mutant. The motility and virulence of O-antigen mutants defective in any gene of the wbiFGHI operon, were not significantly different from the wild-type except in slight decrease in swimming and swarming motility with wbiH deletion. Altogether, the results of present study indicated that the LPS, particularly the core OS region, is required for tolerance to environmental stress and full virulence in B. glumae. To our knowledge, this is the first functional study of LPS in a plant pathogenic Burkholderia sp. and presents a step forward toward full understanding of B. glumae pathogenesis.

Identification and Characterization of the Vibrio vulnificus rtxA Essential for Cytotoxicity in vitro and Virulence in Mice

  • Lee, Jeong-Hyun;Kim, Myung-Won;Kim, Byoung-Sik;Kim, Seung-Min;Lee, Byung-Cheol;Kim, Tae-Sung;Choi, Sang-Ho
    • Journal of Microbiology
    • /
    • 제45권2호
    • /
    • pp.146-152
    • /
    • 2007
  • A mutant exhibiting decreased cytotoxic activity toward INT-407 intestinal epithelial cells and carrying a mutation in the rtx gene cluster that consists of rtxCA and rtxBDE operons was screened from a library of V. vulnificus mutants. The functions of the rtxA gene, assessed by constructing an isogenic mutant and evaluating its phenotypic changes, demonstrated that RtxA is essential for the virulence of V. vulnificus in mice as well as in tissue cultures.

Characterization of the rcsA Gene from Pantoea sp. Strain PPE7 and Its Influence on Extracellular Polysaccharide Production and Virulence on Pleurotus eryngii

  • Kim, Min Keun;Lee, Sun Mi;Seuk, Su Won;Ryu, Jae San;Kim, Hee Dae;Kwon, Jin Hyeuk;Choi, Yong Jo;Yun, Han Dae
    • The Plant Pathology Journal
    • /
    • 제33권3호
    • /
    • pp.276-287
    • /
    • 2017
  • RcsA is a positive activator of extracellular polysaccharide (EPS) synthesis in the Enterobacteriaceae. The rcsA gene of the soft rot pathogen Pantoea sp. strain PPE7 in Pleurotus eryngii was cloned by PCR amplification, and its role in EPS synthesis and virulence was investigated. The RcsA protein contains 3 highly conserved domains, and the C-terminal end of the open reading frame shared significant amino acid homology to the helix-turn-helix DNA binding motif of bacterial activator proteins. The inactivation of rcsA by insertional mutagenesis created mutants that had decreased production of EPS compared to the wild-type strain and abolished the virulence of Pantoea sp. strain PPE7 in P. eryngii. The Pantoea sp. strain PPE7 rcsA gene was shown to strongly affect the formation of the disease symptoms of a mushroom pathogen and to act as the virulence factor to cause soft rot disease in P. eryngii.