Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.04.2019.0124

Stress Tolerance and Virulence-Related Roles of Lipopolysaccharide in Burkholderia glumae  

Lee, Chaeyeong (Department of Microbiology, Pusan National University)
Mannaa, Mohamed (Department of Microbiology, Pusan National University)
Kim, Namgyu (Department of Microbiology, Pusan National University)
Kim, Juyun (Department of Microbiology, Pusan National University)
Choi, Yeounju (Department of Microbiology, Pusan National University)
Kim, Soo Hyun (Department of Microbiology, Pusan National University)
Jung, Boknam (Department of Applied Biology, Dong-A University)
Lee, Hyun-Hee (Department of Microbiology, Pusan National University)
Lee, Jungkwan (Department of Applied Biology, Dong-A University)
Seo, Young-Su (Department of Microbiology, Pusan National University)
Publication Information
The Plant Pathology Journal / v.35, no.5, 2019 , pp. 445-458 More about this Journal
Abstract
The lipopolysaccharide (LPS) composed of lipid A, core, and O-antigen is the fundamental constituent of the outer membrane in gram-negative bacteria. This study was conducted to investigate the roles of LPS in Burkholderia glumae, the phytopathogen causing bacterial panicle blight and seedling rot in rice. To study the roles of the core oligosaccharide (OS) and the O-antigen region, mutant strains targeting the waaC and the wbiFGHI genes were generated. The LPS profile was greatly affected by disruption of the waaC gene and slight reductions were observed in the O-antigen region following wbiFGHI deletions. The results indicated that disruption in the core OS biosynthesis-related gene, waaC, was associated with increased sensitivity to environmental stress conditions including acidic, osmotic, saline, and detergent stress, and to polymyxin B. Moreover, significant impairment in the swimming and swarming motility and attenuation of bacterial virulence to rice were also observed in the waaC-defective mutant. The motility and virulence of O-antigen mutants defective in any gene of the wbiFGHI operon, were not significantly different from the wild-type except in slight decrease in swimming and swarming motility with wbiH deletion. Altogether, the results of present study indicated that the LPS, particularly the core OS region, is required for tolerance to environmental stress and full virulence in B. glumae. To our knowledge, this is the first functional study of LPS in a plant pathogenic Burkholderia sp. and presents a step forward toward full understanding of B. glumae pathogenesis.
Keywords
Burkholderia glumae; lipopolysaccharide; stress tolerance; virulence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Park, B. S. and Lee, J.-O. 2013. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 45:e66.   DOI
2 Ren, G., Wang, Z., Li, Y., Hu, X. and Wang, X. 2016. Effects of lipopolysaccharide core sugar deficiency on colanic acid biosynthesis in Escherichia coli. J. Bacteriol. 198:1576-1584.   DOI
3 Rowbury, R. J. 2004 Enterobacterial responses to external protons, including responses that involve early warning against stress and the functioning of extracellular pheromones, alarmones and varisensors. Sci. Prog. 87:193-225.   DOI
4 Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. 1626 pp.
5 Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G. and Puhler, A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69-73.   DOI
6 Schoonejans, E., Expert, D. and Toussaint, A. 1987. Characterization and virulence properties of Erwinia chrysanthemi lipopolysaccharide-defective, phi EC2-resistant mutants. J. Bacteriol. 169:4011-4017.   DOI
7 Simon, R., Priefer, U. and Puhler, A. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Nat. Biotechnol. 1:784-791.   DOI
8 Sperandeo, P., Martorana, A. M. and Polissi, A. 2017. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:1451-1460.   DOI
9 Vilakazi, C. S., Dubery, I. A. and Piater, L. A. 2017. Identification of lipopolysaccharide-interacting plasma membrane-type proteins in Arabidopsis thaliana. Plant Physiol. Biochem. 111:155-165.   DOI
10 Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P. and Durner, J. 2004. Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl. Acad. Sci. U. S. A. 101:15811-15816.   DOI
11 Vivijs, B., Aertsen, A. and Michiels, C. W. 2016. Identification of genes required for growth of Escherichia coli MG1655 at moderately low pH. Front. Microbiol. 7:1672.
12 Wang, L., Vinogradov, E. V. and Bogdanove, A. J. 2013. Requirement of the lipopolysaccharide O-chain biosynthesis gene wxocB for type III secretion and virulence of Xanthomonas oryzae pv. Oryzicola. J. Bacteriol. 195:1959-1969.   DOI
13 Wang, Q. and Harshey, R. M. 2009. Rcs signalling-activated transcription of rcsA induces strong anti-sense transcription of upstream fliPQR flagellar genes from a weak intergenic promoter: regulatory roles for the anti-sense transcript in virulence and motility. Mol. Microbiol. 74:71-84.   DOI
14 Wang, Z., Wang, J., Ren, G., Li, Y. and Wang, X. 2015. Influence of core oligosaccharide of lipopolysaccharide to outer membrane behavior of Escherichia coli. Mar. Drugs 13:3325-3339.   DOI
15 Westphal, O. 1965. Bacterial lipopolysaccharides extraction with phenol-water and further applications of the procedure. Methods Carbohydr. Chem. 5:83-91.
16 Chun, H., Choi, O., Goo, E., Kim, N., Kim, H., Kang, Y., Kim, J., Moon, J. S. and Hwang, I. 2009. The quorum sensingdependent gene katG of Burkholderia glumae is important for protection from visible light. J. Bacteriol. 191:4152-4157.   DOI
17 Beher, M. G. and Schnaitman, C. A. 1981. Regulation of the OmpA outer membrane protein of Escherichia coli. J. Bacteriol. 147:972-985.   DOI
18 Berry, M. C., McGhee, G. C., Zhao, Y. and Sundin, G. W. 2009. Effect of a waaL mutation on lipopolysaccharide composition, oxidative stress survival, and virulence in Erwinia amylovora. FEMS Microbiol. Lett. 291:80-87.   DOI
19 Castelli, M. E., Fedrigo, G. V., Clementin, A. L., Ielmini, M. V., Feldman, M. F. and Vescovi, E. G. 2008. Enterobacterial common antigen integrity is a checkpoint for flagellar biogenesis in Serratia marcescens. J. Bacteriol. 190:213-220.   DOI
20 Chen, R., Barphagha, I. K. and Ham, J. H. 2015. Identification of potential genetic components involved in the deviant quorumsensing signaling pathways of Burkholderia glumae through a functional genomics approach. Front. Cell. Infect. Microbiol. 5:22.   DOI
21 Denny, T. P. 1995. Involvement of bacterial polysaccharides in plant pathogenesis. Annu. Rev. Phytopathol. 33:173-197.   DOI
22 Desaki, Y., Miya, A., Venkatesh, B., Tsuyumu, S., Yamane, H., Kaku, H., Minami, E. and Shibuya, N. 2006. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol. 47:1530-1540.   DOI
23 Dong, H., Tang, X., Zhang, Z. and Dong, C. 2017. Structural insight into lipopolysaccharide transport from the gramnegative bacterial inner membrane to the outer membrane. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:1461-1467.   DOI
24 Hamad, M. A., Di Lorenzo, F., Molinaro, A. and Valvano, M. A. 2012. Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia. Mol. Microbiol. 85:962-974.   DOI
25 Dow, J. M., Osbourn, A. E., Wilson, T. J. G. and Daniels, M. J. 1995. A locus determining pathogenicity of Xanthomonas campestris is involved in lipopolysaccharide biosynthesis. Mol. Plant-Microbe Interact. 8:768-777.   DOI
26 Finnegan, T., Steenkamp, P. A., Piater, L. A. and Dubery, I. A. 2016. The lipopolysaccharide-induced metabolome signature in Arabidopsis thaliana reveals dynamic reprogramming of phytoalexin and phytoanticipin pathways. PLoS ONE 11:e0163572.   DOI
27 Francez-Charlot, A., Laugel, B., Van Gemert, A., Dubarry, N., Wiorowski, F., Castanie-Cornet, M.-P., Gutierrez, C. and Cam, K. 2003. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol. Microbiol. 49:823-832.   DOI
28 Gronow, S., Brabetz, W. and Brade, H. 2000. Comparative functional characterization in vitro of heptosyltransferase I (WaaC) and II (WaaF) from Escherichia coli. Eur. J. Biochem. 267:6602-6611.   DOI
29 Ham, J. H., Melanson, R. A. and Rush, M. C. 2011. Burkholderia glumae: next major pathogen of rice? Mol. Plant Pathol. 12:329-339.   DOI
30 He, Y.-W., Wu, J., Cha, J.-S. and Zhang, L.-H. 2010. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol. 10:187.   DOI
31 Hendrick, C. A. and Sequeira, L. 1984. Lipopolysaccharidedefective mutants of the wilt pathogen Pseudomonas solanacearum. Appl. Environ. Microbiol. 48:94-101.   DOI
32 Jung, B., Park, J., Kim, N., Li, T., Kim, S., Bartley, L. E., Kim, J., Kim, I., Kang, Y., Yun, K., Choi, Y., Lee, H.-H., Ji, S., Lee, K. S., Kim, B. Y., Shon, J. C., Kim, W. C., Liu, K.-H., Yoon, D., Kim, S., Seo, Y.-S. and Lee, J. 2018. Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice. Nat. Commun. 9:31.   DOI
33 Holst, O. 2007. The structures of core regions from enterobacterial lipopolysaccharides: an update. FEMS Microbiol. Lett. 271:3-11.   DOI
34 Huang, Y.- H., Ferrieres, L. and Clarke, D. J. 2006. The role of the Rcs phosphorelay in Enterobacteriaceae. Res. Microbiol. 157:206-212.   DOI
35 Jang, M. S., Goo, E., An, J. H., Kim, J. and Hwang, I. 2014. Quorum sensing controls flagellar morphogenesis in Burkholderia glumae. PLoS ONE 9:e84831.   DOI
36 Jeong, Y., Cheong, H., Choi, O., Kim, J. K., Kang, Y., Kim, J., Lee, S., Koh, S., Moon, J. S. and Hwang, I. 2011. An HrpBdependent but type III-independent extracellular aspartic protease is a virulence factor of Ralstonia solanacearum. Mol. Plant Pathol. 12:373-380.   DOI
37 Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T. and Hwang I. 2003. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis. 87:890-895.   DOI
38 Kalogeraki, V. S. and Winans, S. C. 1997. Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188:69-75.   DOI
39 Kim, J. K., Jang, H. A., Kim, M. S., Cho, J. H., Lee, J., Di Lorenzo, F., Sturiale, L., Silipo, A., Molinaro, A. and Lee, B. L. 2017. The lipopolysaccharide core oligosaccharide of Burkholderia plays a critical role in maintaining a proper gut symbiosis with the bean bug Riptortus pedestris. J. Biol. Chem. 292:19226-19237   DOI
40 Keen, N. T., Tamaki, S., Kobayashi, D. and Trollinger, D. 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191-197.   DOI
41 Kim, J., Kang, Y., Choi, O., Jeong, Y., Jeong, J.-E., Lim, J. Y., Kim, M., Moon, J. S., Suga, H. and Hwang, I. 2007. Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae. Mol. Microbiol. 64:165-179.   DOI
42 Kong, Q., Yang, J., Liu, Q., Alamuri, P., Roland, K. L. and Curtiss, R. 3rd. 2011. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar Typhimurium. Infect. Immun. 79:4227-4239.   DOI
43 Kim, J., Kim, J.-G., Kang, Y., Jang, J. Y., Jog, G. J., Lim, J. Y., Kim, S., Suga, H., Nagamatsu, T. and Hwang, I. 2004. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol. Microbiol. 54:921-934.   DOI
44 Kim, J., Mannaa, M., Kim, N., Lee, C., Kim, J., Park, J., Lee, H.-H. and Seo, Y.-S. 2018. The roles of two hfq genes in the virulence and stress resistance of Burkholderia glumae. Plant Pathol. J. 34:412-425.   DOI
45 King, K. Y., Horenstein, J. A. and Caparon, M. G. 2000. Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. J. Bacteriol. 182:5290-5299.   DOI
46 Lelis, T., Peng, J., Barphagha, I., Chen, R. and Ham, J. H. 2019. The virulence function and regulation of the metalloprotease gene prtA in the plant-pathogenic bacterium, Burkholderia glumae. Mol. Plant-Microbe Interact. 32:841-852.   DOI
47 Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. and Peterson, K. M. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175-176.   DOI
48 Kutschera, A. and Ranf, S. 2018. The multifaceted functions of lipopolysaccharide in plant-bacteria interactions. Biochimie 159:93-98.   DOI
49 Lee, J., Park, J., Kim, S., Park, I. and Seo, Y.-S. 2016. Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli. Mol. Plant Pathol. 17:65-76.   DOI
50 Levene, H. 1960. Robust tests for equality of variances. In: Contributions to probability and statistics: essays in honor of Harold Hotelling, eds. by I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow and H. B. Mann, pp. 278-292. Stanford University Press, Palo Alto, CA, USA.
51 Li, J. and Wang, N. 2011. The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. Mol. Plant Pathol. 12:381-396.   DOI
52 Loutet, S. A., Flannagan, R. S., Kooi, C., Sokol, P. A. and Valvano, M. A. 2006. A complete lipopolysaccharide inner core oligosaccharide is required for resistance of Burkholderia cenocepacia to antimicrobial peptides and bacterial survival in vivo. J. Bacteriol. 188:2073-2080.   DOI
53 Nakao, R., Ramstedt, M., Wai, S. N. and Uhlin, B. E. 2012. Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis. PLoS ONE 7:e51241.   DOI
54 Mannaa, M., Park, I. and Seo, Y.-S. 2019. Genomic features and insights into the taxonomy, virulence, and benevolence of plant-associated Burkholderia species. Int. J. Mol. Sci. 20:121.   DOI
55 McCarter, L. L. 2006. Regulation of flagella. Curr. Opin. Microbiol. 9:180-186.   DOI
56 Moller, A. K., Leatham, M. P., Conway, T., Nuijten, P. J. M., de Haan, L. A. M., Krogfelt, K. A. and Cohen, P. S. 2003. An Escherichia coli MG1655 lipopolysaccharide deep-rough core mutant grows and survives in mouse cecal mucus but fails to colonize the mouse large intestine. Infect. Immun. 71:2142-2152.   DOI
57 Newman, M.-A., Sundelin, T., Nielsen, J. T. and Erbs, G. 2013. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front. Plant Sci. 4:139.   DOI
58 Ortega, X., Silipo, A., Saldías, M. S., Bates, C. C., Molinaro, A. and Valvano, M. A. 2009. Biosynthesis and structure of the Burkholderia cenocepacia K56-2 lipopolysaccharide core oligosaccharide. truncation of the core oligosaccharide leads to increased binding and sensitivity to polymyxin B. J. Biol. Chem. 284:21738-21751.   DOI
59 Ortega, X., Hunt, T. A., Loutet, S., Vinion-Dubiel, A. D., Datta, A., Choudhury, B., Goldberg, J. B., Carlson, R. and Valvano, M. A. 2005. Reconstitution of O-specific lipopolysaccharide expression in Burkholderia cenocepacia strain J2315, which is associated with transmissible infections in patients with cystic fibrosis. J. Bacteriol. 187: 1324-1333.   DOI