• 제목/요약/키워드: virulence gene

검색결과 320건 처리시간 0.022초

Virulence gene profiles and antimicrobial susceptibility of Salmonella Brancaster from chicken

  • Evie Khoo ;Roseliza Roslee ;Zunita Zakaria;Nur Indah Ahmad
    • Journal of Veterinary Science
    • /
    • 제24권6호
    • /
    • pp.82.1-82.12
    • /
    • 2023
  • Background: The current conventional serotyping based on antigen-antisera agglutination could not provide a better understanding of the potential pathogenicity of Salmonella enterica subsp. enterica serovar Brancaster. Surveillance data from Malaysian poultry farms indicated an increase in its presence over the years. Objective: This study aims to investigate the virulence determinants and antimicrobial resistance in S. Brancaster isolated from chickens in Malaysia. Methods: One hundred strains of archived S. Brancaster isolated from chicken cloacal swabs and raw chicken meat from 2017 to 2022 were studied. Two sets of multiplex polymerase chain reaction (PCR) were conducted to identify eight virulence genes associated with pathogenicity in Salmonella (invasion protein gene [invA], Salmonella invasion protein gene [sipB], Salmonella-induced filament gene [sifA], cytolethal-distending toxin B gene [cdtB], Salmonella iron transporter gene [sitC], Salmonella pathogenicity islands gene [spiA], Salmonella plasmid virulence gene [spvB], and inositol phosphate phosphatase gene [sopB]). Antimicrobial susceptibility assessment was conducted by disc diffusion method on nine selected antibiotics for the S. Brancaster isolates. S. Brancaster, with the phenotypic ACSSuT-resistance pattern (ampicillin, chloramphenicol, streptomycin, sulphonamides, and tetracycline), was subjected to PCR to detect the corresponding resistance gene(s). Results: Virulence genes detected in S. Brancaster in this study were invA, sitC, spiA, sipB, sopB, sifA, cdtB, and spvB. A total of 36 antibiogram patterns of S. Brancaster with a high level of multidrug resistance were observed, with ampicillin exhibiting the highest resistance. Over a third of the isolates displayed ACSSuT-resistance, and seven resistance genes (β-lactamase temoneira [blaTEM], florfenicol/chloramphenicol resistance gene [floR], streptomycin resistance gene [strA], aminoglycoside nucleotidyltransferase gene [ant(3")-Ia], sulfonamides resistance gene [sul-1, sul-2], and tetracycline resistance gene [tetA]) were detected. Conclusion: Multidrug-resistant S. Brancaster from chickens harbored an array of virulence-associated genes similar to other clinically significant and invasive non-typhoidal Salmonella serovars, placing it as another significant foodborne zoonosis.

Contribution of the murI Gene Encoding Glutamate Racemase in the Motility and Virulence of Ralstonia solanacearum

  • Choi, Kihyuck;Son, Geun Ju;Ahmad, Shabir;Lee, Seung Yeup;Lee, Hyoung Ju;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • 제36권4호
    • /
    • pp.355-363
    • /
    • 2020
  • Bacterial traits for virulence of Ralstonia solanacearum causing lethal wilt in plants were extensively studied but are not yet fully understood. Other than the known virulence factors of Ralstonia solanacearum, this study aimed to identify the novel gene(s) contributing to bacterial virulence of R. solanacearum. Among the transposon-inserted mutants that were previously generated, we selected mutant SL341F12 strain produced exopolysaccharide equivalent to wild type strain but showed reduced virulence compared to wild type. In this mutant, a transposon was found to disrupt the murI gene encoding glutamate racemase which converts L-glutamate to D-glutamate. SL341F12 lost its motility, and its virulence in the tomato plant was markedly diminished compared to that of the wild type. The altered phenotypes of SL341F12 were restored by introducing a full-length murI gene. The expression of genes required for flagella assembly was significantly reduced in SL341F12 compared to that of the wild type or complemented strain, indicating that the loss of bacterial motility in the mutant was due to reduced flagella assembly. A dramatic reduction of the mutant population compared to its wild type was apparent in planta (i.e., root) than its wild type but not in soil and rhizosphere. This may contribute to the impaired virulence in the mutant strain. Accordingly, we concluded that murI in R. solanacearum may be involved in controlling flagella assembly and consequently, the mutation affects bacterial motility and virulence.

Riboprint and Virulence Gene Patterns for Bacillus cereus and Related Species

  • Kim, Young-Rok;Batt, Carl A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1146-1155
    • /
    • 2008
  • A total of 72 Bacillus cereus strains and 5 Bacillus thuringiensis strains were analyzed for their EcoRI ribogroup by ribotyping and for the presence or absence of seven virulence-associated genes. From these 77 strains, 42 distinctive ribogroup were identified using EcoRI, but the two species could not be discriminated by their EcoRI ribogroup. The 77 strains were also examined by PCR for the presence of seven virulence-associated genes, cerAB, pi-plc, entFM, bceT, hblA, hblC, and hblD. All five Bacillus thuringiensis strains were positive for these genes. Although differences in the patterns of virulence genes were observed among the different B. cereus strains, within any given ribogroup the patterns of the seven virulence genes was the same. Pulsed-field gel electrophoresis (PFGE) analysis in combination with available chromosomal maps for a selected group of B. cereus strains revealed significant differences in their chromosome size and the placement of virulence genes. Evidence for significant rearrangements within the B. cereus chromosome suggests the mechanism through which the pattern of virulence-associated genes varies. The results suggest linkage between ribogroups and virulence gene patterns as well as no apparent containment of the latter within any particular species boundary.

Virulence factors, antimicrobial resistance patterns, and genetic characteristics of hydrogen sulfide-producing Escherichia coli isolated from swine

  • Park, Hyun-Eui;Shin, Min-Kyoung;Park, Hong-Tae;Shin, Seung Won;Jung, Myunghwan;Im, Young Bin;Yoo, Han Sang
    • 대한수의학회지
    • /
    • 제55권3호
    • /
    • pp.191-197
    • /
    • 2015
  • Escherichia (E.) coli is commensal bacteria found in the intestine; however, some pathogenic strains cause diseases in animals and humans. Although E. coli does not typically produce hydrogen sulfide ($H_2S$), $H_2S$-producing strains of E. coli have been identified worldwide. The relationship between virulence and $H_2S$ production has not yet been determined. Therefore, characteristics of $H_2S$-producing isolates obtained from swine feces were evaluated including antibiotic resistance patterns, virulence gene expression, and genetic relatedness. Rates of antibiotic resistance of the $H_2S$-producing E. coli varied according to antibiotic. Only the EAST1 gene was detected as a virulence gene in five $H_2S$-producing E. coli strains. Genes conferring $H_2S$ production were not transmissible although the sseA gene encoding 3-mercaptopyruvate sulfurtransferase was detected in all $H_2S$-producing E. coli strains. Sequences of the sseA gene motif CGSVTA around Cys238 were also identical in all $H_2S$- producing E. coli strains. Diverse genetic relatedness among the isolates was observed by pulsed-field gel electrophoresis analysis. These results suggested that $H_2S$-producing E. coli strains were not derived from a specific clone and $H_2S$ production in E. coli is not associated with virulence genes.

Functional Identification and Genetic Analysis of O-Antigen Gene Clusters of Food-Borne Pathogen Yersinia enterocolitica O:10 and Other Uncommon Serotypes, Further Revealing Their Virulence Profiles

  • Bin Hu;Jing Wang;Linxing Li;Qin Wang;Jingliang Qin;Yingxin Chi;Junxiang Yan;Wenkui Sun;Boyang Cao;Xi Guo
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권8호
    • /
    • pp.1599-1608
    • /
    • 2024
  • Yersinia enterocolitica is a globally distributed food-borne gastrointestinal pathogen. The O-antigen variation-determined serotype is an important characteristic of Y. enterocolitica, allowing intraspecies classification for diagnosis and epidemiology purposes. Among the 11 serotypes associated with human yersiniosis, O:3, O:5,27, O:8, and O:9 are the most prevalent, and their O-antigen gene clusters have been well defined. In addition to the O-antigen, several virulence factors are involved in infection and pathogenesis of Y. enterocolitica strains, and these are closely related to their biotypes, reflecting pathogenic properties. In this study, we identified the O-AGC of a Y. enterocolitica strain WL-21 of serotype O:10, and confirmed its functionality in O-antigen synthesis. Furthermore, we analyzed in silico the putative O-AGCs of uncommon serotypes, and found that the O-AGCs of Y. enterocolitica were divided into two genetic patterns: (1) O-AGC within the hemH-gsk locus, possibly synthesizing the O-antigen via the Wzx/Wzy dependent pathway, and (2) O-AGC within the dcuC-galU-galF locus, very likely assembling the O-antigen via the ABC transporter dependent pathway. By screening the virulence genes against genomes from GenBank, we discovered that strains representing different serotypes were grouped according to different virulence gene profiles, indicating strong links between serotypes and virulence markers and implying an interaction between them and the synergistic effect in pathogenicity. Our study provides a framework for further research on the origin and evolution of O-AGCs from Y. enterocolitica, as well as on differences in virulent mechanisms among distinct serotypes.

Virulence and Antimicrobial Resistance Gene Profiling of Salmonella Isolated from Swine Meat Samples in Abattoirs and Wet Markets of Metro Manila, Philippines

  • Rance Derrick N. Pavon;Windell L. Rivera
    • 한국미생물·생명공학회지
    • /
    • 제51권4호
    • /
    • pp.390-402
    • /
    • 2023
  • Salmonella are Gram-negative pathogenic bacteria commonly found in food animals such as poultry and swine and potentially constitute risks and threats to food safety and public health through transmissible virulence and antimicrobial resistance (AMR) genes. Although there are previous studies in the Philippines regarding genotypic and phenotypic AMR in Salmonella, there are very few on virulence and their associations. Hence, this study collected 700 Salmonella isolates from swine samples in abattoirs and wet markets among four districts in Metro Manila and characterized their genotypic virulence and β-lactam AMR profiles. Gene frequency patterns and statistical associations between virulence and bla genes and comparisons based on location types (abattoirs and wet markets) and districts were also determined. High prevalence (>50%) of virulence genes was detected encompassing Salmonella pathogenicity islands (SPIs) 1-5 suggesting their pathogenic potential, but none possessed plasmid-borne virulence genes spvR and spvC. For bla, blaTEM was detected with high prevalence (>45%) and revealed significant associations to four SPI genes, namely, avrA, hilA, mgtC, and spi4R, which suggest high resistance potential particularly to β-lactam antibiotics and relationships with pathogenicity that remain mechanistically unestablished until now. Lastly, comparisons of location types and districts showed variations in gene prevalence suggesting effects from environmental factors throughout the swine production chain. This study provides vital data on the genotypic virulence and AMR of Salmonella from swine in abattoirs and wet markets that suggest their pathogenicity and resistance potential for policymakers to implement enforced surveillance and regulations for the improvement of the Philippine swine industry.

축산물유래 Listeria monocytogenes의 virulence marker 및 gene 조사 (Exploration of Virulence Markers and Genes of Listeria monocytogenes Isolated from Animal Products)

  • 이철현;송현호;김미령;강호조;손원근
    • 한국식품위생안전성학회지
    • /
    • 제23권3호
    • /
    • pp.248-256
    • /
    • 2008
  • 본 연구는 축산물 유래 L. monocytogenes에 대한 역학적 연구로서 분리균의 hemolysin(LLO) 및 lecithinase(LCP)생산성, Congo red dye(CRA)흡수성 및 hemolysin activity를 조사하는 한편 inlA, inlBV, actA, hlyA, plcA 및 plcB의 virulence gene을 PCR법으로 분석하였다. LLO, LCP 및 CRA의 양성률은 L. monocytogenes의 경우 68균주 중 각각 100%, 94.1% 및 77.9%이었고, L. ivanovii와 L. seeligeri를 제외한 다른 Listeria spp.(L. innocua, L. gray, L. murrayi, L. welchimeri)는 음성이었다. LLO와 LCP간에는 통계적인 유의성은 없었으나 CRA는 약간 낮게 나타났으며(p<0.05), serotype 1/2b 및 4b 간에도 유의성이 인정되지 않았다. 면양적혈구에 대한 용혈성(MHU)에서 L. monocytogenes의 경우 2배에서 16배까지 다양한 반응을 보였으나 L. ivanovii와 L. seeligeri를 제외한 다른 Listeria spp.는 음성이었다. hemolysin activity(HU)는 L. monocytogenes의 경우 대부분의 균주가 1.0 HU/mg 이상이었으나 다른 Listeria spp.는 대부분 0.04 HU/mg 이하였다. PCR 증폭하여 virulence gene을 분석한 결과 모든 L. monocytogenes는 각기 예상한 크기의 PCR 증폭산물이 검출되어 hlyA, plcA, plcB, inlA 및 inlB gene을 보유하고 있음이 확인되었으나 다른 Listeria spp.는 어떠한 증폭산물도 보이지 않았다. 또한 actA gene에 대한 증폭산물은 385bp와 268bp 크기의 2종류로 각각 57.4%와 42.6%의 분포를 나타내었다. actA gene의 size 분포에서 국내산 쇠고기, 닭고기, 유가공장에서는 큰 size가 많았는데 반하여 미국산 수입쇠고기에서는 작은 size가 많은 것으로 나타났다.

The Roles of Two hfq Genes in the Virulence and Stress Resistance of Burkholderia glumae

  • Kim, Jieun;Mannaa, Mohamed;Kim, Namgyu;Lee, Chaeyeong;Kim, Juyun;Park, Jungwook;Lee, Hyun-Hee;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제34권5호
    • /
    • pp.412-425
    • /
    • 2018
  • The Hfq protein is a global small RNA chaperone that interacts with regulatory bacterial small RNAs (sRNA) and plays a role in the post-transcriptional regulation of gene expression. The roles of Hfq in the virulence and pathogenicity of several infectious bacteria have been reported. This study was conducted to elucidate the functions of two hfq genes in Burkholderia glumae, a causal agent of rice grain rot. Therefore, mutant strains of the rice-pathogenic B. glumae BGR1, targeting each of the two hfq genes, as well as the double defective mutant were constructed and tested for several phenotypic characteristics. Bacterial swarming motility, toxoflavin production, virulence in rice, siderophore production, sensitivity to $H_2O_2$, and lipase production assays were conducted to compare the mutant strains with the wild-type B. glumae BGR1 and complementation strains. The hfq1 gene showed more influence on bacterial motility and toxoflavin production than the hfq2 gene. Both genes were involved in the full virulence of B. glumae in rice plants. Other biochemical characteristics such as siderophore production and sensitivity to $H_2O_2$ induced oxidative stress were also found to be regulated by the hfq1 gene. However, lipase activity was shown to be unassociated with both tested genes. To the best of our knowledge, this is the first study to elucidate the functions of two hfq genes in B. glumae. Identification of virulence-related factors in B. glumae will facilitate the development of efficient control measures.

Diversity of PthA Gene of Xanthomonas Strains Causing Citrus Bacterial Canker and its Relationship with Virulence

  • Lee, Seung-Don;Lee, Jung-Hee;Lee, Dong-Hee;Lee, Yong-Hoon
    • The Plant Pathology Journal
    • /
    • 제24권3호
    • /
    • pp.357-360
    • /
    • 2008
  • Several pathotypes have been recognized in citrus bacterial canker, which causing serious damage in citrus cultivation area. To control the disease, it is important to understand the pathological diversity and reason of difference in virulence of the causal pathogen. We analyzed 124 strains of Xanthomonas causing citrus bacterial canker by southern hybridization with an internal 3.4-kb BamHI fragment from pthA gene. Assuming each band represented an intact gene, each strain of Xanthomonas was estimated to have approximately 1 to 4 copies of pthA gene. X. a. pv. citri A type had more than 3 copies of pthA gene, and the number of pthA gene in X. a. pv. citri $A^*,\;A^w$, and X. a. pv. aurantifolii B, C were different from 1 to 3 according to the strains. When the pthA gene profile was classified into 13 groups according to the number and size of hybridization bands, most of the A types belong to the 3A group, and 4A and 4B type was dominant when they had 4 bands. However, there was no general pattern of difference between the virulence and pthA gene group in this test.

Characterization of Pyrenophora graminea Markers Associated with a Locus Conferring Virulence on Barley

  • Mokrani, Lubna;Jawhar, Mohammad;Shoaib, Amina;Arabi, Mohammad Imad Eddin
    • The Plant Pathology Journal
    • /
    • 제28권3호
    • /
    • pp.290-294
    • /
    • 2012
  • The fungus Pyrenophora graminea is the causal agent of barley leaf stripe disease. Two leaf stripe isolates PgSy3 (exhibiting high virulence on the barley cultivar 'Arabi Abiad') and PgSy1 (exhibiting low virulence on Arabi Abiad), were mated and 63 progeny were isolated and phenotyped for the reaction on Arabi Abiad. The population segregated in a 1:1 ratio, 32 virulent to 31 avirulent (${\chi}^2$ = 0.05, P = 0.36), indicating single gene control of PgSy3 virulence on Arabi Abiad. Among 96 AFLP markers identified, three AFLP markers, E37M50-400, E35M59-100 and E38M47-800 were linked to the virulence locus VHv1 in isolate PgSy3. The results of this study indicate that (the three markers) are closely linked to VHv1 and are unique to isolates carrying the virulence locus. This work represents an initial step towards map-based cloning of VHv1 in P. graminea.