• Title/Summary/Keyword: virtual wheel

Search Result 66, Processing Time 0.028 seconds

A Guideline Tracing Technique Based on a Virtual Tracing Wheel for Effective Navigation of Vision-based AGVs (비전 기반 무인반송차의 효과적인 운행을 위한 가상추적륜 기반 유도선 추적 기법)

  • Kim, Minhwan;Byun, Sungmin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.539-547
    • /
    • 2016
  • Automated guided vehicles (AGVs) are widely used in industry. Several types of vision-based AGVs have been studied in order to reduce cost of infrastructure building at floor of workspace and to increase flexibility of changing the navigation path layout. A practical vision-based guideline tracing method is proposed in this paper. A virtual tracing wheel is introduced and adopted in this method, which enables a vision-based AGV to trace a guideline in diverse ways. This method is also useful for preventing damage of the guideline by enforcing the real steering wheel of the AGV not to move on the guideline. Usefulness of the virtual tracing wheel is analyzed through computer simulations. Several navigation tests with a commercial AGV were also performed on a usual guideline layout and we confirmed that the virtual tracing wheel based tracing method could work practically well.

Kinematics and Inverse Kinematics in Unmanned Bicycle System (무인자전거 시스템의 정역학 및 역정역학)

  • Ham, Woon-Chul
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • Bicycle is one of convenient transportation system. In this paper, we derive a more precise kinematics of bicycle system compared with other ones which were suggested by other researchers. In the derivation of kinematics we adopted a physical concept called virtual wheel. We also propose an algorithm for deriving inverse kinematics of a bicycle system. In this paper, the meaning of inverse kinematics is to find the time functions of steering angle and driving wheel speed for a given desired path trajectory. From the computer simulation, we show the validity of our proposed algorithm for inverse kinematics of bicycle system.

  • PDF

Setting method of virtual rigid axles for steering control (조향제어를 위한 가상고정축 설정 방법)

  • Moon, Kyeong-Ho;Mok, Jai-Kyun;Chang, Se-Ky;Lee, Soo-Ho;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.236-243
    • /
    • 2007
  • Steering systems are classified as FWS(front-wheel steering), RWS(rear-wheel steering) and AWS(all-wheel steering) according to steering position. AWS is effective to reduce turning radius and platform length because all wheels are steered. Although various rear wheel control logics for AWS were developed, these are applied to four wheel steering cars. Therefore new control logics must be developed to apply articulated vehicles. In the present study, it is suggested how to control the real wheels based on the virtual rigid axles and also how to set it to minimize the turning radius.

  • PDF

K-Wheel : Interactive Virtual Reality Application Using IMU Sensor And Real Wheel (K-Wheel : IMU 센서와 회전보드(휠)를 이용한 인터랙티브 가상현실 방송 제작 어플리케이션)

  • Yang, Ki-Sun;Oh, Juhyun;Kim, Byungsun-Sun;Kim, Chang-Hun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.81-83
    • /
    • 2015
  • 본 논문은 방송의 가상스튜디오 제작 환경에서 많이 사용되는 회전 또는 스크롤 메뉴를 진행자가 직접 휠(회전보드)을 움직여, 진행자와 그래픽과의 자연스러운 상호작용이 가능한 인터랙티브 가상현실 방송 제작 어플리케이션을 제안한다. 이를 위해, 우리는 물리적인 휠의 움직임을 인지할 수 있도록 관성측정장치(IMU: Inertial Measurement Unit)를 사용하였으며, IMU 센서가 부착된 휠을 크로마키로 처리하기 위해 푸른색의 페인팅된 물리적인 휠을 사용하였다. 본 어플리케이션을 통해서 가상스튜디오의 연기자는 물리적인 휠의 움직임을 느끼면서 휠을 회전시킴으로써 별도의 연습이나 훈련 없이도 직관적으로 회전하는 여러 타입의 가상 그래픽 메뉴를 제어할 수 있다. 우리는 상하 스크롤, 원형 회전, 스크롤 연동형 메뉴 어플리케이션들을 개발하였으며, 이것을 방송에 적용하여, 연기자와 휠에 연동한 그래픽과의 인터랙션이 자연스럽게 합성됨을 확인하였다.

  • PDF

Research on Landing Impact Characteristic Of Multi-Wheel Bogie Landing gear's Truck

  • Cao, Xin;Jia, Yuhong;Tian, Jiajie
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.83-86
    • /
    • 2015
  • Taking the four-wheel bogie landing gear as an example, the force status of truck-like landing gear during the landing impact was analyzed and the simulation model of four-wheel bogie landing gear was established. Firstly, a landing gear prototyping model was established using CATIA and imported to LMS Virtual.lab. Secondly, dynamic analysis of the landing impact was simulated with the established model. Finally, with the help of LMS Virtual.lab's parametric design ability, the effects of landing approach and truck pitch angle on the landing performance, truck motion and truck beam strength were studied. These conclusions will be useful to the design and analysis of the truck.

Energy Flow Analysis of Working and Driving System of a Wheel Loader (휠로더 주행 및 작업시스템의 동력흐름 분석)

  • Oh, K.S.;Kim, H.K.;Yi, K.S.;Ko, K.E.;Kim, P.Y.;Seo, J.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.22-29
    • /
    • 2014
  • This paper presents simulation-based analysis of energy flow of a wheel loader. The objective of this study is to analyze the energy flow of a wheel loader during driving and working. Because the wheel loader powertrain consists of a mechanical and hydraulic powertrain, the generated power from the engine is divided into 2 powertrains. Further, a virtual prediction of energy flow in the powertrains is a key factor in terms of optimal design. Accordingly, the simulation model that is able to predict the virtual energy flow is developed and analyzed in this study. The proposed wheel loader simulation model has been constructed in the Matlab/Simulink environment. It is expected that the developed simulation model will analyze the energy flow and efficiency in the design stage.

Virtual design evaluation system for and automobile cabin (인공현실감을 이용한 승용차 운전석 디자인 평가시스템)

  • 윤정선;박재희;김철중
    • Journal of the Ergonomics Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.83-90
    • /
    • 1995
  • Virtual reality can be applied well to product design and evaluation. A virtual design evaluation system for an automobile cabin was implemented on a desk-top virtual environment system. It has two frontal seats, a dashboard, a steering wheel, and various displays/controllers. Users can interact with these components as they do that with real ones. To verify the effectiveness of the virtual design evaluation system, 17 subjects participated in the evaluation procedure. The evaluation result showed that the stereoscopic vision enhanced the subjective reality of the virtual automobile cabin. Graphic details, design, and time lag were also related to the subjective feel for reality.

  • PDF

Development of the Fishbot Using Haptic Technology (햅틱기술을 이용한 피시봇 개발)

  • Lee, Young-Dae;Kang, Jeong-Jin;Moon, Chan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.77-82
    • /
    • 2010
  • In this paper, a haptic fishing robot, Fishbot, for a Virtual Fishing System is presented. Fishbot is 3DOF robot and it consists of a XY table and a wheel motor. To simulate the motion of fish, XY table is controlled by position servo drivers with variable torque constraint, and wheel axis is controlled by torque servo driver. Finally, Fishibot detects the end point of fishing pole with cameras to recognize the pose of user, and it can interface with a Virtual Reality System.

The Handling Characteristics of The Independent Rear Wheel Steering Vehicle Using the Reference Model Following Control (기준모델 추종제어를 이용한 독립 후륜조향 차량의 조향 특성해석)

  • 봉우종;이상호;이언구;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.130-140
    • /
    • 2000
  • In this paper the reference model following control(RMFC) scheme through the optimal control theory is investigated for the independent rear wheel steering(IRWS) vehicle. RMFC vehicle follows the dynamic performance of a virtual vehicle as a reference model deisgned in the controller. Linear vehicle model of two degres-of-freedom is used to derive control scheme which is applied to full vehicle for evaluating handling performances. And 4WS vehicle through RMFC is compared to the conventional 2WS vehicle and 4WS vehicle in the J-turn test. The RMFC logic is also extended to IRWS vehicle, IRWS with RMFC shows not only the excellent handling performance but salso some advantages in terms of the directional stability and responsiveness from the simulation results.

  • PDF

A Study on the Development of the VTL Vehicle Dynamics Model to Analyze Vibration Characteristics (차량 진동특성 해석을 위한 VTL 차량 모델 개발에 관한 연구)

  • Kwon, Seong-Jin;Bae, Chul-Yong;Kim, Chan-Jung;Lee, Bong-Hyun;Koo, Byoung-Kook;Rho, Guck-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.409-414
    • /
    • 2007
  • Nowadays, with the advancement of computational mechanics, and vehicle dynamics simulation linked up with virtual testing laboratory(VTL) and virtual proving ground(VPG) technologies has become a useful method for analyzing numerous driving performances and diverse noise/vibration characteristics. In this paper, the analytical vehicle model based on multi-body dynamics theory was developed to investigate the vibration characteristics according to various road conditions. For the purpose, the whole vehicle parameters, each vehicle's part parameter, and part connecting elements such as spring, damper, and bush were measured by an experiment. Also, the vehicle dynamics model, which includes the front suspension, rear suspension, steering, front wheel, rear wheel, and body subsystems has been constructed for computer simulation. With the developed vehicle dynamics model, three forces and three moments measured at each wheel center were applied to evaluate and analyze dynamics and vibration characteristics for miscellaneous road conditions.

  • PDF