• 제목/요약/키워드: virtual transaction

검색결과 89건 처리시간 0.023초

디지털경제와 산업 전환: PC와 가전 산업의 사례 연구 (Industrial Transformation in digital economy: A Case Study on PC and Comsumer Industries)

  • 배영자
    • 기술경영경제학회:학술대회논문집
    • /
    • 기술경영경제학회 2002년도 제20회 동계학술발표회 논문집
    • /
    • pp.133-149
    • /
    • 2002
  • This study aims to investigate the impact of wide use of digital technology, in particular, the Internet, on innovation process and corporate strategy in electronics industry. The introduction of digital technology has changed innovation process, business model and organizational structure of the electronics companies. With the introduction of digital technology, the entire value chain of electronics industry from procurement, sales, and marketing to R&D and manufacturing has been restructured. E-commerce has been a major agenda for e-business. Recently, collaboration among electronics companies through e-marketplace has emerged as an important issue. A web-based e-commerce standard, so called RosettaNet, has been developed for facilitating e-transactions of electronics firms. The development of digital technology has dramatically increased the processing speed and sophisticated the virtual reality technology. As simulation becomes easier and more effective, the uncertainty and risk involved in R&D has decreased significantly. Another positive impact is closer cooperation between R&D and manufacturing functions. Taking advantage of automated and flexible production technology, has a new type of firm, so called, EMS (Electronics Manufacturing Services) emerged, whose strategic focus is on manufacturing only. The EMS can be seen as a kind of innovative organization, that is, a modular organization for production function. Digital technology has made convergence of computer and communication possible at early years but right now the convergence has been accelerated in extensive areas of communication, broadcasting, information appliances, software, contents, and services. Firms' effort for an innovative product and service has been intensified and the competition for a new standard product and service has become severe in electronics industry. Business activities are always realized in a specific organizational context. Accordingly building up innovation-friendly organization has emerged as a critical concern. Due to the striking decrease of transaction cost, a network type of organization has proliferated, and a business function turns into a modular organization. As a whole, digital technology has pushed electronics firms into developing their own business model, which takes consideration of standardization of business platform and their core competency.

  • PDF

U-마켓에서의 사용자 정보보호를 위한 매장 추천방법 (A Store Recommendation Procedure in Ubiquitous Market for User Privacy)

  • 김재경;채경희;구자철
    • Asia pacific journal of information systems
    • /
    • 제18권3호
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.

국내 중소 서비스용 로봇 기업의 플랫폼을 이용한 시장 창출 전략: 로보프린트 사례연구 (Using Platforms as Market Creation Strategies for Small and Medium-Sized Service Robotics Companies in South Korea: The ROBOPRINT Case Study)

  • 오수정
    • 중소기업연구
    • /
    • 제43권2호
    • /
    • pp.59-86
    • /
    • 2021
  • 플랫폼(platform) 개념은 제품 플랫폼, 거래 플랫폼에서 산업 플랫폼에 이르기까지 다양한 형태로 기업의 경영활동에 활용되어 왔다. 모든 플랫폼은 공통적으로 자주 재사용 되는 핵심과 재사용이 적고 자주 변경되는 주변부로 구성된다. 기업은 플랫폼을 사용하여 제품군, 거래, 그리고 혁신을 보다 효율적으로 개발 및 창출할 수 있다. 이러한 플랫폼은 제품을 중심으로 한 전통적 산업구조에 변화를 가져옴으로써 많은 중소기업에게 새로운 기회를 제공한다. 한국의 서비스용 로봇 산업은 협소한 시장 규모로 인해 주로 기술 중심의 중소기업으로 구성되어 있다. 이들 중소기업들은 기술개발에 성공하더라도 제품을 판매하기 위해 시장을 창출하고 확장하는데 어려움을 겪는다. 따라서 본 연구는 한국 서비스용 로봇 산업의 특성 및 문제점을 조명하고 중소기업인 로보프린트가 어떻게 서비스용 로봇 시장을 확장하고 지속적으로 성장하였는지를 플랫폼 이론을 적용하여 분석하였다. 분석결과, 로보프린트는 제품과 거래 플랫폼 개념을 적용한 것으로 나타났다. 첫째, 로보프린트는 초기에 개발한 아트봇의 핵심 기술을 기반으로 페인팅 로봇, 건물 외벽 청소 로봇 및 맞춤형 로봇을 개발하였다. 또한, 직접 로봇을 이용한 아파트 벽화 서비스를 제공하고 이를 방음벽, 지하통로, 옹벽 등 다양한 지역으로 확장하였다. 뿐만 아니라 가상현실 기술을 개발하는 등 새로운 서비스를 지속적으로 추가했다. 둘째, 로보프린트는 벽화 서비스 구매자와 벽화 디자이너를 매개하였다. 이는 벽화 서비스를 의뢰하는 구매자들이 디자이너를 탐색해야 하는 번거로움을 줄여주었고, 벽화 디자이너들에게는 벽화사업의 참여 기회를 열어주었다. 마지막으로 로보프린트는 플랫폼의 범위를 지속적으로 넓히고자 노력하였다. 내부에서만 재사용되던 로보프린트의 기술을 외부 기업과 공유하기 위해 대구광역시 '신기술 플랫폼 서비스'에 참여하였다. 뿐만 아니라 로봇을 외부 기업에 임대하여 서비스 플랫폼을 공유하고자 노력하고 있다. 본 연구는 중소기업이 다양한 플랫폼을 이용하여 시장을 창출하고 지속적으로 확장할 수 있음을 보여주어 기존 플랫폼 이론에 기여하며 실무자들에게도 유용한 시사점을 준다.

인터넷쇼핑몰의 VMD 구성요인에 대한 탐색적 연구 (An Exploratory Study on the Components of Visual Merchandising of Internet Shopping Mall)

  • 김광석;신종국;구동모
    • 마케팅과학연구
    • /
    • 제18권2호
    • /
    • pp.19-45
    • /
    • 2008
  • 본 연구는 인터넷쇼핑몰 비주얼 머천다이징의 주요차원을 고객이 쇼핑몰에 진입한 후 정보탐색과 대안평가를 거치는 등의 쇼핑과정을 토대로 AIDA모형 관점에서 점포, 제품, 촉진에 초점을 맞추었다. VMD의 주요차원(primary dimensions)으로는 점포디자인, 머천다이징, 그리고 머천다이징단서로 구분하였다. 선행연구 결과를 토대로 점포다자인의 하위차원으로는 차별성, 간결성, 위치확인성을, 머천다이즈의 하위차원으로는 제품구색, 명성, 정보성을, 그리고 머천다이징단서의 하위차원으로는 제품추천 및 링크를 설정하여 VMD태도와의 관계를 탐색적으로 조사하였다. 연구결과 이들 세 차원은 종속변수에 유의한 정의 영향을 미치는 것으로 나타났다.

  • PDF

카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법 (A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining)

  • 이동원
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.27-42
    • /
    • 2020
  • 인터넷이라는 가상 공간을 활용함으로써 물리적 공간의 제약을 갖는 오프라인 쇼핑의 한계를 넘어선 온라인 쇼핑은 다양한 기호를 가진 소비자를 만족시킬 수 있는 수많은 상품을 진열할 수 있게 되었다. 그러나, 이는 역설적으로 소비자가 구매의사결정 과정에서 너무 많은 대안을 비교 평가해야 하는 어려움을 겪게 함으로써 오히려 상품 선택을 방해하는 원인이 되기도 한다. 이런 부작용을 해소하기 위한 노력으로서, 연관 상품 추천은 수많은 상품을 다루는 온라인 상거래에서 소비자의 구매의사결정 과정 중 정보탐색 및 대안평가에 소요되는 시간과 노력을 줄여주고 이탈을 방지하며 판매자의 매출 증대에 기여할 수 있다. 연관 상품 추천에 사용되는 연관 규칙 마이닝 기법은 통계적 방법을 통해 주문과 같은 거래 데이터로부터 서로 연관성 높은 상품을 효과적으로 발견할 수 있다. 하지만, 이 기법은 거래 건수를 기반으로 하므로, 잠재적으로 판매 가능성이 높을지라도 충분한 거래 건수가 확보되지 못한 상품은 추천 목록에서 누락될 수 있다. 이렇게 추천 시 제외된 상품은 소비자에게 구매될 수 있는 충분한 기회를 확보하지 못할 수 있으며, 또 다시 다른 상품에 비해 상대적으로 낮은 추천 기회를 얻는 악순환을 겪을 수도 있다. 본 연구는 구매의사결정이 결국 상품이 지닌 속성에 대한 사용자의 평가를 기반으로 한다는 점에 착안하여, 추천 시 상품의 속성을 반영하면 소비자가 특정 상품을 선택할 확률을 좀더 정확하게 예측할 수 있다는 점을 추천 시스템에 반영하기 위한 목적으로 수행되었다. 즉, 어떤 상품 페이지를 방문한 소비자는 그 상품이 지닌 속성들에 어느 정도 관심을 보인 것이며 추천 시스템은 이런 속성들을 기반으로 연관성을 지닌 상품을 더 정교하게 찾을 수 있다는 것이다. 상품의 주요 속성의 하나로서, 카테고리는 두 상품 간에 아직 드러나지 않은 잠재적인 연관성을 찾기에 적합한 대상이 될 수 있다고 판단하였다. 본 연구는 연관 상품 추천에 상품 간의 연관성뿐만 아니라 카테고리 간의 연관성을 추가로 반영함으로써 추천의 정확도를 높일 수 있는 예측모형을 개발하였고, 온라인 쇼핑몰로부터 수집된 주문 데이터를 활용하여 이루어진 실험은 기존 모형에 비해 추천 성능이 개선됨을 보였다. 실무적인 관점에서 볼 때, 본 연구는 소비자의 구매 만족도를 향상시키고 판매자의 매출을 증가시키는 데에 기여할 수 있을 것으로 기대된다.

M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발 (Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms)

  • 양훈석;김선웅;최흥식
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.63-83
    • /
    • 2019
  • 투자자들은 기업의 내재가치 분석, 기술적 보조지표 분석 등 복잡한 분석보다 차트(chart)에 나타난 그래프(graph)의 모양으로 매매 시점을 찾는 직관적인 방법을 더 선호하는 편이다. 하지만 패턴(pattern) 분석 기법은 IT 구현의 난이도 때문에 사용자들의 요구에 비해 전산화가 덜 된 분야로 여겨진다. 최근에는 인공지능(artificial intelligence, AI) 분야에서 신경망을 비롯한 다양한 기계학습(machine learning) 기법을 사용하여 주가의 패턴을 연구하는 사례가 많아졌다. 특히 IT 기술의 발전으로 방대한 차트 데이터를 분석하여 주가 예측력이 높은 패턴을 발굴하는 것이 예전보다 쉬워졌다. 지금까지의 성과로 볼 때 가격의 단기 예측력은 높아졌지만, 장기 예측력은 한계가 있어서 장기 투자보다 단타 매매에서 활용되는 수준이다. 이외에 과거 기술력으로 인식하지 못했던 패턴을 기계적으로 정확하게 찾아내는 데 초점을 맞춘 연구도 있지만 찾아진 패턴이 매매에 적합한지 아닌지는 별개의 문제이기 때문에 실용적인 부분에서 취약할 수 있다. 본 연구는 주가 예측력이 있는 패턴을 찾으려는 기존 연구 방법과 달리 패턴들을 먼저 정의해 놓고 확률기반으로 선택해서 매매하는 방법을 제안한다. 5개의 전환점으로 정의한 Merrill(1980)의 M&W 파동 패턴은 32가지의 패턴으로 시장 국면 대부분을 설명할 수 있다. 전환점만으로 패턴을 분류하기 때문에 패턴 인식의 정확도를 높이기 위해 드는 비용을 줄일 수 있다. 32개 패턴으로 만들 수 있는 조합의 수는 전수 테스트가 불가능한 수준이다. 그래서 최적화 문제와 관련한 연구들에서 가장 많이 사용되고 있는 인공지능 알고리즘(algorithm) 중 하나인 유전자 알고리즘(genetic algorithm, GA)을 이용하였다. 그리고 미래의 주가가 과거를 반영한다 해도 같게 움직이지 않기 때문에 전진 분석(walk-forward analysis, WFA)방법을 적용하여 과최적화(overfitting)의 실수를 줄이도록 하였다. 20종목씩 6개의 포트폴리오(portfolio)를 구성하여 테스트해 본 결과에 따르면 패턴 매매에서 가격 변동성이 어느 정도 수반되어야 하며 패턴이 진행 중일 때보다 패턴이 완성된 후에 진입, 청산하는 것이 효과적임을 확인하였다.

지능형 온라인 핸드메이드 서비스 도입을 위한 구매자 의사결정모형에 관한 연구 (A Study on the Buyer's Decision Making Models for Introducing Intelligent Online Handmade Services)

  • 박종원;양성병
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.119-138
    • /
    • 2016
  • 산업혁명 이후 기계로 만든 공산품이 시장의 대부분을 차지하고 있지만, 최근에는 장인의 노력, 품질에 대한 믿음, 제품의 희소성, 제품을 사용함으로써 얻는 자부심 등을 이유로 많은 소비자들이 같은 범주의 공산품보다 더 비싼 가격을 주고 핸드메이드 제품을 구매하고 있다. Etsy.com은 세계 최대 온라인 핸드메이드 플랫폼으로 2015년 4월 기업공개에서 2조원이 넘는 자금을 조달하면서 온라인 핸드메이드 플랫폼의 잠재력을 증명하였다. 그러나 실제 온라인 플랫폼 환경에서 이루어진 지능형 서비스 관련 선행연구들을 살펴보면 대부분 공산품만을 대상으로 하고 있어, 핸드메이드 제품에 대한 학술적 접근이 충분히 이뤄지지 않고 있음을 알 수 있다. 이에, 본 연구에서는 신호 이론과 온라인 플랫폼에서의 구매자-판매자 관계 특성에 대한 선행연구를 바탕으로 온라인 핸드메이드 플랫폼에 적용 가능한 핵심 특성요인인 입점 상점 특성(명성, 규모)과 입점 상점 관계특성(정보공유, 관계기간)을 도출한 후, Etsy.com 웹사이트에서 웹 하베스팅 방법으로 수집된 데이터를 이용하여 실증 분석하였다. 분석 결과, 입점 상점 특성 가운데 명성과 규모, 그리고 입점 상점 관계특성 가운데 정보공유는 입점 상점의 총 판매량에 유의한 영향을 주는 것으로 확인되었다. 또한, 입점 상점 특성 중 명성, 그리고 입점 상점 관계특성 중 관계기간은 입점 상점의 가격 프리미엄에 유의한 영향을 주는 것으로 나타났다. 본 연구의 결과로 온라인 핸드메이드 플랫폼에서 지능형 서비스 도입 및 운영을 위한 효과적인 관리 기준을 제시하고, 나아가 입점 상점이 핸드메이드 제품에 대한 판매량 증진 및 가격 프리미엄 극대화를 위한 실질적 전략 마련에 도움이 될 수 있기를 기대한다.

멀티에이전트시스템(MAS)을 이용한 G2B 조달 프로세스 혁신의 효과평가에 관한 연구 : 나라장터 G2B사례 (A Study on the Performance Evaluation of G2B Procurement Process Innovation by Using MAS: Korea G2B KONEPS Case)

  • 서원준;이대철;임규건
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.157-175
    • /
    • 2012
  • 방대한 규모와 복잡한 프로세스로 구성된 공공조달의 혁신성과를 평가하기란 매우 어려운 문제이다. 기존의 프로세스 혁신 평가는 주로 설문 및 인터뷰, 그리고 운영데이터를 분석한 정성적, 또는 통계적인 정량적 방법들이었다. 이에 본 연구에서는 공공조달 프로세스를 복잡계로 보고 이에 대한 시뮬레이션 방법으로 멀티에이전트시스템(MAS)을 이용하여 공공조달 프로세스 혁신효과 평가모델을 개발하였다. 그리고, 개발된 MAS 기반의 공공조달 혁신평가 모델을 우리나라 조달청의 G2B(나라장터, KONEPS) 시스템에 적용하여 혁신효과를 평가하였다. MAS 시뮬레이션 도구는 Northwestern University에서 개발된 Netlogo Version 4.1.3을 사용하였고, 모델링에서는 에이전트 정의, 에이전트 행동특성 정의, 에이전트 관계 정의의 세단계로 진행하였다. 첫째, 에이전트 정의에서는 에이전트가 될 대상을 선정하고, 에이전트가 가진 속성과 변수들을 정의하였다. 둘째, 행동특성 정의에서는 각 에이전트의 행동계획 및 자원할당을 설정하였고, 셋째, 관계정의 단계에서는 상태변화에 따른 행동 규칙을 설정하였다. 또한 프로세스 혁신의 목적에 맞는 성과를 측정하기 위하여 혁신 효과평가항목을 선정하였고, 데이터는 조달청의 협조를 통해 DB 데이터와 설문데이터를 활용하였다. 이를 통해 프로세스 전체 및 프로세스별 절감시간과 업무량의 절감율을 측정하였다. 실험결과 전체 프로세스의 효율성이 증대되었으며 '평균 업무처리 건수'의 절감율이 92.7%, '평균 업무처리 시간'의 절감율이 95.4%로 나타났다. 즉 공공조달분야는 G2B 시스템 도입을 통해 프로세스 혁신을 추진한 결과 매우 높은 효율성이 제고된 것으로 분석되었다. 또한 본 연구를 통해 '계약'과 관련한 업무프로세스에서 추가적인 개선이 이루어질 경우 프로세스 혁신효과가 더욱 향상될 수 있는 것으로 분석되었다. 본 연구는 MAS를 이용하여 프로세스 개선효과에 대한 평가모델을 제시하고 분석했다는데 의의가 있다.

A New Item Recommendation Procedure Using Preference Boundary

  • Kim, Hyea-Kyeong;Jang, Moon-Kyoung;Kim, Jae-Kyeong;Cho, Yoon-Ho
    • Asia pacific journal of information systems
    • /
    • 제20권1호
    • /
    • pp.81-99
    • /
    • 2010
  • Lately, in consumers' markets the number of new items is rapidly increasing at an overwhelming rate while consumers have limited access to information about those new products in making a sensible, well-informed purchase. Therefore, item providers and customers need a system which recommends right items to right customers. Also, whenever new items are released, for instance, the recommender system specializing in new items can help item providers locate and identify potential customers. Currently, new items are being added to an existing system without being specially noted to consumers, making it difficult for consumers to identify and evaluate new products introduced in the markets. Most of previous approaches for recommender systems have to rely on the usage history of customers. For new items, this content-based (CB) approach is simply not available for the system to recommend those new items to potential consumers. Although collaborative filtering (CF) approach is not directly applicable to solve the new item problem, it would be a good idea to use the basic principle of CF which identifies similar customers, i,e. neighbors, and recommend items to those customers who have liked the similar items in the past. This research aims to suggest a hybrid recommendation procedure based on the preference boundary of target customer. We suggest the hybrid recommendation procedure using the preference boundary in the feature space for recommending new items only. The basic principle is that if a new item belongs within the preference boundary of a target customer, then it is evaluated to be preferred by the customer. Customers' preferences and characteristics of items including new items are represented in a feature space, and the scope or boundary of the target customer's preference is extended to those of neighbors'. The new item recommendation procedure consists of three steps. The first step is analyzing the profile of items, which are represented as k-dimensional feature values. The second step is to determine the representative point of the target customer's preference boundary, the centroid, based on a personal information set. To determine the centroid of preference boundary of a target customer, three algorithms are developed in this research: one is using the centroid of a target customer only (TC), the other is using centroid of a (dummy) big target customer that is composed of a target customer and his/her neighbors (BC), and another is using centroids of a target customer and his/her neighbors (NC). The third step is to determine the range of the preference boundary, the radius. The suggested algorithm Is using the average distance (AD) between the centroid and all purchased items. We test whether the CF-based approach to determine the centroid of the preference boundary improves the recommendation quality or not. For this purpose, we develop two hybrid algorithms, BC and NC, which use neighbors when deciding centroid of the preference boundary. To test the validity of hybrid algorithms, BC and NC, we developed CB-algorithm, TC, which uses target customers only. We measured effectiveness scores of suggested algorithms and compared them through a series of experiments with a set of real mobile image transaction data. We spilt the period between 1st June 2004 and 31st July and the period between 1st August and 31st August 2004 as a training set and a test set, respectively. The training set Is used to make the preference boundary, and the test set is used to evaluate the performance of the suggested hybrid recommendation procedure. The main aim of this research Is to compare the hybrid recommendation algorithm with the CB algorithm. To evaluate the performance of each algorithm, we compare the purchased new item list in test period with the recommended item list which is recommended by suggested algorithms. So we employ the evaluation metric to hit the ratio for evaluating our algorithms. The hit ratio is defined as the ratio of the hit set size to the recommended set size. The hit set size means the number of success of recommendations in our experiment, and the test set size means the number of purchased items during the test period. Experimental test result shows the hit ratio of BC and NC is bigger than that of TC. This means using neighbors Is more effective to recommend new items. That is hybrid algorithm using CF is more effective when recommending to consumers new items than the algorithm using only CB. The reason of the smaller hit ratio of BC than that of NC is that BC is defined as a dummy or virtual customer who purchased all items of target customers' and neighbors'. That is centroid of BC often shifts from that of TC, so it tends to reflect skewed characters of target customer. So the recommendation algorithm using NC shows the best hit ratio, because NC has sufficient information about target customers and their neighbors without damaging the information about the target customers.