• Title/Summary/Keyword: virtual rotation

Search Result 122, Processing Time 0.037 seconds

Manufacture of 3-Dimensional Image and Virtual Dissection Program of the Human Brain (사람 뇌의 3차원 영상과 가상해부 풀그림 만들기)

  • Chung, M.S.;Lee, J.M.;Park, S.K.;Kim, M.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.57-59
    • /
    • 1998
  • For medical students and doctors, knowledge of the three-dimensional (3D) structure of brain is very important in diagnosis and treatment of brain diseases. Two-dimensional (2D) tools (ex: anatomy book) or traditional 3D tools (ex: plastic model) are not sufficient to understand the complex structures of the brain. However, it is not always guaranteed to dissect the brain of cadaver when it is necessary. To overcome this problem, the virtual dissection programs of the brain have been developed. However, most programs include only 2D images that do not permit free dissection and free rotation. Many programs are made of radiographs that are not as realistic as sectioned cadaver because radiographs do not reveal true color and have limited resolution. It is also necessary to make the virtual dissection programs of each race and ethnic group. We attempted to make a virtual dissection program using a 3D image of the brain from a Korean cadaver. The purpose of this study is to present an educational tool for those interested in the anatomy of the brain. The procedures to make this program were as follows. A brain extracted from a 58-years old male Korean cadaver was embedded with gelatin solution, and serially sectioned into 1.4 mm-thickness using a meat slicer. 130 sectioned specimens were inputted to the computer using a scanner ($420\times456$ resolution, true color), and the 2D images were aligned on the alignment program composed using IDL language. Outlines of the brain components (cerebrum, cerebellum, brain stem, lentiform nucleus, caudate nucleus, thalamus, optic nerve, fornix, cerebral artery, and ventricle) were manually drawn from the 2D images on the CorelDRAW program. Multimedia data, including text and voice comments, were inputted to help the user to learn about the brain components. 3D images of the brain were reconstructed through the volume-based rendering of the 2D images. Using the 3D image of the brain as the main feature, virtual dissection program was composed using IDL language. Various dissection functions, such as dissecting 3D image of the brain at free angle to show its plane, presenting multimedia data of brain components, and rotating 3D image of the whole brain or selected brain components at free angle were established. This virtual dissection program is expected to become more advanced, and to be used widely through Internet or CD-title as an educational tool for medical students and doctors.

  • PDF

Postural Control in Brain Damage Patients According to Moving Surround (뇌기능 장애 환자의 가상영상(Moving Sorround) 자극에 따른 자세 균형 제어)

  • 김연희;최종덕;이성범;김종윤;이석준;박찬희;김남균
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.11a
    • /
    • pp.233-244
    • /
    • 2002
  • The purpose of this study is to assess the ability of balance control in moving surround using head mount device and force platform and to examine the clinical usefulness of COP parameters. Fifteen patients with stroke and healthy persons were participated. COP parameters were obtained as total path distance, frequency of anterior-posterior and medial-lateral component by FFT analysis, weight-spectrum analysis in the two different conditions; (1) in comfortable standing with opened or closed eyes, (2) in virtual moving surround delivered using HMD to four different moving pattern. In virtual moving surround setting, moving pattern was composed of close-far, superior-inferior tilting(pitch), right-left tilting(roll) and horizontal rotation(yaw) movement. In all parameters, the reliebility of COP analysis system was significantly high. Also, the construct validity compared between fifteen patients with stroke and normal persons was excellent in virtual moving surround condition(p

  • PDF

A Study on Evaluation of Visual Factor for Measuring Subjective Virtual Realization (주관적인 가상 실감화 측정 방법에 대한 시각적 요소 평가 연구)

  • Won, Myeung-Ju;Park, Sang-In;Kim, Chi-Jung;Lee, Eui-Chul;Whang, Min-Cheol
    • Science of Emotion and Sensibility
    • /
    • v.15 no.3
    • /
    • pp.389-398
    • /
    • 2012
  • Virtual worlds have pursued reality as if they actually exist. In order to evaluate the sense of reality in the computer-simulated worlds, several subjective questionnaires, which include specific independent variables, have been proposed in the literature. However, the questionnaires lack reliability and validity necessary for defining and measuring the virtual realization. Few studies have been conducted to investigate the effect of visual factors on the sense of reality experienced by exposing to a virtual environment. Therefore, this study was aimed at reinvestigating the variables and proposing a more reliable and advisable questionnaire for evaluating the virtual realization, focusing on visual factors. Twenty-one questions were gleaned from the literature and subjective interviews with focused groups. Exploratory factor analysis with oblique rotation was performed on the data obtained from 200 participants(females: 100) after exposing to a virtual character image described in an extreme way. After removing poorly loading items, remained subsets were subjected to confirmatory factor analysis on the data obtained from the same participants. As a result, 3 significant factors were determined to efficiently measure the virtual realization. The determined factors included visual presence(3 subset items), visual immersion(7 subset items), and visual interactivity(4 subset items). The proposed factors were verified by conducting a subjective evaluation in which participants were asked to evaluate a 3D virtual eyeball model based on the visual presence. The results implicated that the measurement method was suitable for evaluating the degree of the virtual realization. The proposed method is expected to reasonably measure the degree of the virtual realization.

  • PDF

Cubical User Interface for Toy Block Composition in Augmented Reality (증강 현실에서의 장난감 블록 결합을 위한 큐브형 사용자 인터페이스)

  • Lee, Hyeong-Mook;Lee, Young-Ho;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.363-367
    • /
    • 2009
  • We propose Cubical User Interface(CUI) for toy block composition in Augmented Reality. The creation of new object by composing virtual object is able to construct various AR contents effectively. However, existing GUI method requires learning time or is lacking of intuitiveness between act of user and offered interface. In case of AR interfaces, they mainly have been supported one handed operation and it did not consider composition property well. Therefore, the CUI provide tangible cube as the manipulation tool for virtual toy block composition in AR. The tangible cube which is attached multi-markers, magnets, and buttons supports free rotation, combination, and button input. Also, we propose two kinds of two-handed composing interactions based on CUI. First is Screw Driving(SD) method which is possible to free 3-D positioning and second is Block Assembly(BA) method which support visual guidance and is fast and intuitive. We expected that proposed interface can apply as the authoring system for content such as education, entertainment, Digilogbook.

  • PDF

Development of Multibody Dynamic Model of Cervical Spine for Virtual In Vitro Cadaveric Experiment (가상 생체외 사체 실험용 경추 다물체 동역학 모델 개발)

  • Lim, Dae Seop;Lee, Ki Seok;Kim, Yoon Hyuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.953-959
    • /
    • 2013
  • In this study, a multibody dynamic model of the cervical spine was developed for a virtual in-vitro cadaveric experiment. The dynamic cervical spine model was reconstructed based on Korean CT images and the material properties of joints and soft tissue obtained from in-vitro experimental literature. The model was validated by comparing the inter-segmental rotation, multi-segmental rotations, load-displacement behavior, ligament force, and facet contact force with the published in-vitro experimental data. The results from the model were similar to published experimental data. The developed dynamic model of the cervical spine can be useful for injury analysis to predict the loads and deformations of the individual soft-tissue elements as well as for virtual in-vitro cadaveric experiments.

Reliable Camera Pose Estimation from a Single Frame with Applications for Virtual Object Insertion (가상 객체 합성을 위한 단일 프레임에서의 안정된 카메라 자세 추정)

  • Park, Jong-Seung;Lee, Bum-Jong
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.499-506
    • /
    • 2006
  • This Paper describes a fast and stable camera pose estimation method for real-time augmented reality systems. From the feature tracking results of a marker on a single frame, we estimate the camera rotation matrix and the translation vector. For the camera pose estimation, we use the shape factorization method based on the scaled orthographic Projection model. In the scaled orthographic factorization method, all feature points of an object are assumed roughly at the same distance from the camera, which means the selected reference point and the object shape affect the accuracy of the estimation. This paper proposes a flexible and stable selection method for the reference point. Based on the proposed method, we implemented a video augmentation system that inserts virtual 3D objects into the input video frames. Experimental results showed that the proposed camera pose estimation method is fast and robust relative to the previous methods and it is applicable to various augmented reality applications.

Full-field Distortion Measurement of Virtual-reality Devices Using Camera Calibration and Probe Rotation (카메라 교정 및 측정부 회전을 이용한 가상현실 기기의 전역 왜곡 측정법)

  • Yang, Dong-Geun;Kang, Pilseong;Ghim, Young-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.237-242
    • /
    • 2019
  • A compact virtual-reality (VR) device with wider field of view provides users with a more realistic experience and comfortable fit, but VR lens distortion is inevitable, and the amount of distortion must be measured for correction. In this paper, we propose two different full-field distortion-measurement methods, considering the characteristics of the VR device. The first is the distortion-measurement method using multiple images based on camera calibration, which is a well-known technique for the correction of camera-lens distortion. The other is the distortion-measurement method by measuring lens distortion at multiple measurement points by rotating a camera. Our proposed methods are verified by measuring the lens distortion of Google Cardboard, as a representative sample of a commercial VR device, and comparing our measurement results to a simulation using the nominal values.

Electromyographic Activities of Lower Leg Muscles During Static Balance Control in Normal Adults (정상성인에서 정적 균형 제어 시 다양한 조건에 따른 하퇴 근육 활성도의 특성)

  • Woo, Young-Keun;Park, Ji-Won;Choi, Jong-Duk;Hwang, Ji-Hye;Kim, Yun-Hee
    • Physical Therapy Korea
    • /
    • v.11 no.2
    • /
    • pp.35-45
    • /
    • 2004
  • The purpose of this study was to investigate the correlation and characteristics between electromyographic (EMG) activities of lower leg muscles and the posturographic assessment of static balance control in normal adults. Twenty-four young, healthy adults(12 males, 12 females) participated in the study. Center of pressure (COP) parameters were obtained using force platform as total path distance, total sway area, X mean frequency and Y mean frequency for 20 seconds in the following conditions: (1) comfortable standing with eyes opened or closed, (2) uncomfortable standing (feet together) with eyes opened or closed, (3) virtual moving surround delivered using Head mount display (HMD) with four different moving patterns. The virtual moving patterns consisted of close-far, superior-inferior tilting (pitch), right-left tilting (roll), and horizontal rotation (yaw) movements. Surface electromyographic activites were recorded on the tibialis anterior, peroneus longus, medial and lateral heads of gastrocnemius muscles under each condition. Correlation between the posturographic measures and EMG activities were evaluated. Total path distance and total sway area of COP were significantly increased during uncomfortable standing. EMG activity of tibialis anterior was significantly more during uncomfortable standing and virtual moving surround stimulation than during comfortable standing. Total path distance and sway area of COP during comfortable standing with closed eyes showed significant positive correlation with the EMG activities of the lateral head of gastrocnemius muscle. Total path distances and total sway area of COP during muscle. Total path distances and total sway area of COP during presentation of virtual moving surround also had significant positive correlations with EMG activities of the lateral head of gastrocnemius muscle under close-far movement.

  • PDF

Virtual Dissection System of Cadaver Heart Using 3-Dimensional Image

  • Chung, Min-Suk;Lee, Je-Man;Kim, Min-Koo;Park, Seung-Kyu
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.357-360
    • /
    • 1997
  • For medical students and doctors, knowledge of the 3-dimensional (3D) structure of the heart is very important in diagnosis and treatment of the heart diseases. 2-dimensional (2D) tools (e.g. anatomy book) or classical 3D tools (e.g. plastic model) are not sufficient or understanding the complex structures of the heart. Moreover, it is not always guaranteed to dissect the heart of cadaver when it is necessary. To overcome this problem, virtual dissection systems of the heart have been developed. But these systems are not satisfactory since they are made of radiographs; they are not true 3D images; they can not be used to dissect freely; or they can only be operated on the workstation. It is also necessary to make the dissection systems incorporating the various races and tribes because of the organ's difference according to race and tribe. This study was intended to make the 3D image of the heart from a Korean cadaver, and to establish a virtual dissection system of the heart with a personal computer. The procedures or manufacturing this system were as follows. 1. The heart from a Korean adult cadaver was embedded with gelatin solution, and serially cross-sectioned at 1mm-thickness on a meat slicer. Pictures or 153 cross-sectioned specimens were inputted into the computer using a digital camera ($756{\times}504$ resolution, true color). 2. The alignment system was established by means of the language of IDL, and applied to align 2D images of the heart. In each of 2D images, closed curves lining clean and dirty blood pathways were drawn manually on the CorelDRAW program. 3. Using the language of IDL, the 3D image and the virtual dissection system of the heart were constructed. The virtual dissection system of the heart allowed or ree rotation, any-directional sectioning, and selected visualization of the heart's structure. This system is expected to become more advanced, and to be used widely through Internet or CD-title as an educational tool for medical students and doctors.

  • PDF

Design of a new 4-DOF soft finger mechanism (4자유도 새로운 소프트 핑거 설계)

  • Cha, Hyo-Jung;Yi, Byung-Ju
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.315-322
    • /
    • 2008
  • A new soft finger mechanism using a spring as a backbone is proposed in this work. It is a 4 DOF mechanism that consists of a spring and 3 cylinders, which behave like joints with 3 up-and-down rotations and 1 left-and-right rotation. To control each joint, cylinders have small holes in their cross-sectional areas, and wires of different length are penetrated into these holes. We can control each joint by pulling the corresponding wire. The forward kinematics is solved by using the geometry of mechanism. And the relationship (Jacobian) between the linear velocity of the wires and the joint angular rate is obtained. A virtual simulator is developed to test the validity of the kinematic model. In the experiment, first, the position control is conducted by tracking a given trajectory. Second, to verify the flexibility and safety, we show that the soft finger deflects in a safe manner, in spite of the collision with environment.

  • PDF