• Title/Summary/Keyword: video surveillance system

Search Result 303, Processing Time 0.021 seconds

Video Data Collection Scheme From Vehicle Black Box Using Time and Location Information for Public Safety (사회 안전망 구축을 위한 시간과 위치 정보 기반의 차량 블랙박스 영상물 수집 기법)

  • Choi, Jae-Duck;Chae, Kang-Suk;Jung, Sou-Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.771-783
    • /
    • 2012
  • This paper proposes a scheme to collect video data of the vehicle black box in order to strengthen the public safety. The existing schemes, such as surveillance system with the fixed CCTV and car black box, have privacy issues, network traffic overhead and the storage space problems because all video data are sent to the central server. In this paper, the central server only collects the video data related to the accident or the criminal offense using the GPS information and time in order to investigation of the accident or the criminal offense. The proposed scheme addresses the privacy issues and reduces network traffic overhead and the storage space of the central server since the central server collects the video data only related to the accident and the criminal offense. The implementation and experiment shows that our service is feasible. The proposed service can be used as a component of remote surveillance system to prevent the criminal offense and to investigate the criminal offense.

A Surveillance System Using Images and Movement Detection Sensors (움직임 감지용 센서와 정지 영상을 이용한 감시 시스템)

  • Che, Zhong-Yong;Kim, Sangchul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.181-189
    • /
    • 2013
  • Since conventional image surveillance systems employ methods for video recording and transmission, a huge amount of data is transferred and stored so that those systems are overloaded. However, for capturing and recording the scenes of illegal trash throwing and unpermitted parking, it is sufficient to use a surveillance system using images. In this paper, we propose a surveillance system using images and motion detection sensors. Our system recognizes the occurrence of movement events through changes of sensors, captures still images of the region under surveillance, and stores them into the database at a remote site. The system proposed herein provides a functionality to detect the occurrent of those events more accurately and faster than previous video-based systems, and has an advantage of reducing the amount of data significantly. Also, our system is agent-based, it enables us to add new modules or modify existing modules easily later.

Digital Surveillance System with fast Detection of Moving Object (움직이는 물체의 고속 검출이 가능한 디지털 감시 시스템)

  • 김선우;최연성;박한엽
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.405-417
    • /
    • 2001
  • In this paper, since we currently using surveillance system of analog type bring about waste of resource and efficiency deterioration problems, we describe new solution that design and implementation to the digital surveillance system of new type applying compression techniques and encoding techniques of image data using MPEG-2 international standard. Also, we proposed fast motion estimation algorithm requires much less than the convectional digital surveillance camera system. In this paper a fast motion estimation algorithm is proposed the MPEG-2 video encoding. This algorithm is based on a hybrid use of the block matching technique and gradient technique. Also, we describe a method of moving object extraction directly using MPEG-2 video data. Since proposed method is very simple and requires much less computational power than the conventional object detection methods. In this paper we don't use specific H/W and this system is possible only software encoding, decoding and transmission real-time for image data.

  • PDF

Multi-channel Video Analysis Based on Deep Learning for Video Surveillance (보안 감시를 위한 심층학습 기반 다채널 영상 분석)

  • Park, Jang-Sik;Wiranegara, Marshall;Son, Geum-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1263-1268
    • /
    • 2018
  • In this paper, a video analysis is proposed to implement video surveillance system with deep learning object detection and probabilistic data association filter for tracking multiple objects, and suggests its implementation using GPU. The proposed video analysis technique involves object detection and object tracking sequentially. The deep learning network architecture uses ResNet for object detection and applies probabilistic data association filter for multiple objects tracking. The proposed video analysis technique can be used to detect intruders illegally trespassing any restricted area or to count the number of people entering a specified area. As a results of simulations and experiments, 48 channels of videos can be analyzed at a speed of about 27 fps and real-time video analysis is possible through RTSP protocol.

An Analysis of Big Video Data with Cloud Computing in Ubiquitous City (클라우드 컴퓨팅을 이용한 유시티 비디오 빅데이터 분석)

  • Lee, Hak Geon;Yun, Chang Ho;Park, Jong Won;Lee, Yong Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.45-52
    • /
    • 2014
  • The Ubiquitous-City (U-City) is a smart or intelligent city to satisfy human beings' desire to enjoy IT services with any device, anytime, anywhere. It is a future city model based on Internet of everything or things (IoE or IoT). It includes a lot of video cameras which are networked together. The networked video cameras support a lot of U-City services as one of the main input data together with sensors. They generate huge amount of video information, real big data for the U-City all the time. It is usually required that the U-City manipulates the big data in real-time. And it is not easy at all. Also, many times, it is required that the accumulated video data are analyzed to detect an event or find a figure among them. It requires a lot of computational power and usually takes a lot of time. Currently we can find researches which try to reduce the processing time of the big video data. Cloud computing can be a good solution to address this matter. There are many cloud computing methodologies which can be used to address the matter. MapReduce is an interesting and attractive methodology for it. It has many advantages and is getting popularity in many areas. Video cameras evolve day by day so that the resolution improves sharply. It leads to the exponential growth of the produced data by the networked video cameras. We are coping with real big data when we have to deal with video image data which are produced by the good quality video cameras. A video surveillance system was not useful until we find the cloud computing. But it is now being widely spread in U-Cities since we find some useful methodologies. Video data are unstructured data thus it is not easy to find a good research result of analyzing the data with MapReduce. This paper presents an analyzing system for the video surveillance system, which is a cloud-computing based video data management system. It is easy to deploy, flexible and reliable. It consists of the video manager, the video monitors, the storage for the video images, the storage client and streaming IN component. The "video monitor" for the video images consists of "video translater" and "protocol manager". The "storage" contains MapReduce analyzer. All components were designed according to the functional requirement of video surveillance system. The "streaming IN" component receives the video data from the networked video cameras and delivers them to the "storage client". It also manages the bottleneck of the network to smooth the data stream. The "storage client" receives the video data from the "streaming IN" component and stores them to the storage. It also helps other components to access the storage. The "video monitor" component transfers the video data by smoothly streaming and manages the protocol. The "video translator" sub-component enables users to manage the resolution, the codec and the frame rate of the video image. The "protocol" sub-component manages the Real Time Streaming Protocol (RTSP) and Real Time Messaging Protocol (RTMP). We use Hadoop Distributed File System(HDFS) for the storage of cloud computing. Hadoop stores the data in HDFS and provides the platform that can process data with simple MapReduce programming model. We suggest our own methodology to analyze the video images using MapReduce in this paper. That is, the workflow of video analysis is presented and detailed explanation is given in this paper. The performance evaluation was experiment and we found that our proposed system worked well. The performance evaluation results are presented in this paper with analysis. With our cluster system, we used compressed $1920{\times}1080(FHD)$ resolution video data, H.264 codec and HDFS as video storage. We measured the processing time according to the number of frame per mapper. Tracing the optimal splitting size of input data and the processing time according to the number of node, we found the linearity of the system performance.

Development of Real-time Video Surveillance System Using the Intelligent Behavior Recognition Technique (지능형 행동인식 기술을 이용한 실시간 동영상 감시 시스템 개발)

  • Chang, Jae-Young;Hong, Sung-Mun;Son, Damy;Yoo, Hojin;Ahn, Hyoung-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.161-168
    • /
    • 2019
  • Recently, video equipments such as CCTV, which is spreading rapidly, is being used as a means to monitor and cope with abnormal situations in almost governments, companies, and households. However, in most cases, since recognizing the abnormal situation is carried out by the monitoring person, the immediate response is difficult and is used only for post-analysis. In this paper, we present the results of the development of video surveillance system that automatically recognizing the abnormal situations and sending such events to the smartphone immediately using the latest deep learning technology. The proposed system extracts skeletons from the human objects in real time using Openpose library and then recognizes the human behaviors automatically using deep learning technology. To this end, we reconstruct Openpose library, which developed in the Caffe framework, on Darknet framework to improve real-time processing. We also verified the performance improvement through experiments. The system to be introduced in this paper has accurate and fast behavioral recognition performance and scalability, so it is expected that it can be used for video surveillance systems for various applications.

Secure Camera Network System for Intelligent Surveillance Systems Based on Real-Time Video (실시간 영상 기반의 지능형 보안 관제 시스템을 위한 안전한 카메라 네트워크 시스템)

  • Yang, Soo-mi;Ko, Eun-kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1102-1106
    • /
    • 2015
  • To provide social security and for cooperative smart camera context awareness processing, each camera stores and exchange context data. For a specific event, measured values with other context data is stored RDB. RDB is transformed to ontology RDF file and is used for context reasoning. Interoperability between smart cameras conforms to ONVIF and constitutes intelligent surveillance system. To guarantee the confidentiality and integrity, securiy techniques are adopted. Security overhead between agents is analyzed in the prototype system implemented.

Intelligent Video Surveillance System using RFID Technology (RFID 기술을 이용한 지능형 영상 감시 시스템)

  • An, Tae-Ki;Hong, You-Sik;Song, Young-Jun;Lee, Won-Jae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.133-139
    • /
    • 2011
  • lots of problems are emerged on the conventional surveillance systems at urban railway infrastructure. Many projects and research activities have been processing on those problems. Moreover, The interest in Intelligent Video Surveillance System that provides accident prevention and safe driving in urban railway service is dramatically increasing. This paper represents a drawback of existing studies and introduces a new solution using RFID TAG technology to improve the existing problems. Finally, it describes the practice test of automatic notification system based USN(Ubiquitous Sensor Network) for a dangerous situation.

On-line Background Extraction in Video Image Using Vector Median (벡터 미디언을 이용한 비디오 영상의 온라인 배경 추출)

  • Kim, Joon-Cheol;Park, Eun-Jong;Lee, Joon-Whoan
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.515-524
    • /
    • 2006
  • Background extraction is an important technique to find the moving objects in video surveillance system. This paper proposes a new on-line background extraction method for color video using vector order statistics. In the proposed method, using the fact that background occurs more frequently than objects, the vector median of color pixels in consecutive frames Is treated as background at the position. Also, the objects of current frame are consisted of the set of pixels whose distance from background pixel is larger than threshold. In the paper, the proposed method is compared with the on-line multiple background extraction based on Gaussian mixture model(GMM) in order to evaluate the performance. As the result, its performance is similar or superior to the method based on GMM.

Sub-Frame Analysis-based Object Detection for Real-Time Video Surveillance

  • Jang, Bum-Suk;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.76-85
    • /
    • 2019
  • We introduce a vision-based object detection method for real-time video surveillance system in low-end edge computing environments. Recently, the accuracy of object detection has been improved due to the performance of approaches based on deep learning algorithm such as Region Convolutional Neural Network(R-CNN) which has two stage for inferencing. On the other hand, one stage detection algorithms such as single-shot detection (SSD) and you only look once (YOLO) have been developed at the expense of some accuracy and can be used for real-time systems. However, high-performance hardware such as General-Purpose computing on Graphics Processing Unit(GPGPU) is required to still achieve excellent object detection performance and speed. To address hardware requirement that is burdensome to low-end edge computing environments, We propose sub-frame analysis method for the object detection. In specific, We divide a whole image frame into smaller ones then inference them on Convolutional Neural Network (CNN) based image detection network, which is much faster than conventional network designed forfull frame image. We reduced its computationalrequirementsignificantly without losing throughput and object detection accuracy with the proposed method.