• Title/Summary/Keyword: video compression standard

Search Result 172, Processing Time 0.032 seconds

MPEG-5 EVC Encoder Improvement for V-PCC

  • Dong, Tianyu;Jang, Euee S.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.78-80
    • /
    • 2021
  • In this paper, we proposed an improved method on the picture order of coding (POC) of MPEG-5 Essential video Coding (EVC) encoder to support a short intra period for Video-based Point Cloud Compression (V-PCC). As a codec-agnostically designed standard, V-PCC claimed to be able to work with a lot of codecs. Current EVC test model software shows that the baseline profile could not provide appropriate POC calculation. The proposed method offers a solution to this POC-related problem and provides up to 44.6% coding grains for EVC based V-PCC.

  • PDF

A Study of Multi-Channel Video Transfer System with EBCOT (EBCOT를 이용한 다 채널 영상 전송 시스템에 대한 연구)

  • 추연학;김영민
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.1
    • /
    • pp.75-81
    • /
    • 2001
  • A EBCOT(Embedded Block Coding with Optimized Truncation) is image compression codec using in JPEG2000, currently the new standard for still image coding. this paper proposes multi-channel video transfer system with EBCOT using a single codec to transfer video to difference band-width channel. This parer testify that compression rate of EBCOT higher than ordinary VLC using RLC and Huffman codec and apply EBCOT to JPEG structure. this structure increases parallelism and error resilience using black coding method. finally it looks into difficult to apply MPEG structure to multi channel video transfer system, and proposes solution using EBCOT.

  • PDF

A Study on the Compression Efficiency of a Digital Hologram Video using Domain Transforms and H.265/HEVC (도메인 변환 및 H.265/HEVC를 이용한 디지털 홀로그램 비디오의 압축효율에 대한 연구)

  • Jang, Su-Jin;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.592-608
    • /
    • 2016
  • Recently, many researches on digital holograms, which retain almost perfect 3 dimensional image information, have been performed actively that it seems for them to be serviced soon. Accordingly, this paper proposes a data compression technique for a digital hologram video for this service. It uses H.265/HEVC, the most recent international 2 dimensional video compression standard, for which we consider various domain transform methods to increase the correlation among the pixels in a digital hologram. Also we consider the various parameters on H.265/HEVC. The purpose of this paper is to find empirically the optimal condition for the domain transform method, the size of transform unit, and the H.265/HEVC parameters. The proposed method satisfying the optimal parameter set found is compared to the existing methods to prove that ours shows better performance.

MPEG Video Retrieval Using U-Trees Construction (KD-Trees구조를 이용한MPEG 비디오 검색)

  • Kim, Daeil;Hong, Jong-Sun;Jang, Hye-Kyoung;Kim, Young-Ho;Kang, Dae-Seong
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1855-1858
    • /
    • 2003
  • In this paper, we propose image retrieval method more accurate and efficient than the conventional one. First of ail, we perform a shot detection and key frame extraction from the DC image constructed by DCT DC coefficients in the compressed video stream that is video compression standard such as MPEG[I][2]. We get principal axis applying PCA(Principal Component Analysis) to key frames for obtaining indexing information, and divide a domain. Video retrieval uses indexing information of high dimension. We apply KD-Trees(K Dimensional-Trees)[3] which shows efficient retrieval in data set of high dimension to video retrieval method. The proposed method can represent property of images more efficiently and property of domains more accurately using KD-Trees.

  • PDF

CPU Parallel Processing and GPU-accelerated Processing of UHD Video Sequence using HEVC (HEVC를 이용한 UHD 영상의 CPU 병렬처리 및 GPU가속처리)

  • Hong, Sung-Wook;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.816-822
    • /
    • 2013
  • The latest video coding standard HEVC was developed by the joint work of JCT-VC(Joint Collaborative Team on Video Coding) from ITU-T VCEG and ISO/IEC MPEG. The HEVC standard reduces the BD-Bitrate of about 50% compared with the H.264/AVC standard. However, using the various methods for obtaining the coding gains has increased complexity problems. The proposed method reduces the complexity of HEVC by using both CPU parallel processing and GPU-accelerated processing. The experiment result for UHD($3840{\times}2144$) video sequences achieves 15fps encoding/decoding performance by applying the proposed method. Sooner or later, we expect that the H/W speedup of data transfer rates between CPU and GPU will result in reducing the encoding/decoding times much more.

Fast Algorithm for Intra Prediction of HEVC Using Adaptive Decision Trees

  • Zheng, Xing;Zhao, Yao;Bai, Huihui;Lin, Chunyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3286-3300
    • /
    • 2016
  • High Efficiency Video Coding (HEVC) Standard, as the latest coding standard, introduces satisfying compression structures with respect to its predecessor Advanced Video Coding (H.264/AVC). The new coding standard can offer improved encoding performance compared with H.264/AVC. However, it also leads to enormous computational complexity that makes it considerably difficult to be implemented in real time application. In this paper, based on machine learning, a fast partitioning method is proposed, which can search for the best splitting structures for Intra-Prediction. In view of the video texture characteristics, we choose the entropy of Gray-Scale Difference Statistics (GDS) and the minimum of Sum of Absolute Transformed Difference (SATD) as two important features, which can make a balance between the computation complexity and classification performance. According to the selected features, adaptive decision trees can be built for the Coding Units (CU) with different size by offline training. Furthermore, by this way, the partition of CUs can be resolved as a binary classification problem. Experimental results have shown that the proposed algorithm can save over 34% encoding time on average, with a negligible Bjontegaard Delta (BD)-rate increase.

Performance Analysis of Compression Techniques Using DCT and DWT on Elemental Images in 3D Integral Imaging (3 차원 집적영상에서의 요소영상 압축을 위한 DCT 및 DWT 성능분석)

  • Muniraj, Inbarasan;Moon, In-Kyu
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.340-342
    • /
    • 2012
  • Integral Imaging (II) is an attractive technique for three-dimensional (3D) image, video display and recording. Inherently, the high resolution II requires an enormous amount of data for storing and transmitting of 3D scenes. Compression techniques attempt to evade this issue. In this study, we made a comparative performance analysis of popular transforming/compression techniques such as the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform (DWT) in order to compress 3D-II. The standard baseline JPEG (Joint Photographic Experts Group) using DCT and JPEG 2000 using DWT methods were manipulated in our experiments. In our analysis, we have shown that the DWT based JPEG 2000 compression methodology could be a good alternative for 3D-II.

  • PDF

Block-based Learned Image Compression for Phase Holograms (신경망 기반 블록 단위 위상 홀로그램 이미지 압축)

  • Seung Mi Choi;Su yong Bahk;Hyun Min Ban;Jun Yeong Cha;Hui Yong Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.42-54
    • /
    • 2023
  • It is an important issue to compress huge holographic data in a digital format. In particular, research on the compression of phase-only holograms for commercialization is noteworthy. Conventional video coding standards optimized for natural images are not suitable for compressing phase signals, and neural network-based compression model that can be optimized for phase signals can achieve high performance, but has a memory issue in learning high-resolution holographic data. In this paper, we show that by applying a block-based learned image compression model that can solve memory problems to phase-only holograms, the proposed method can demonstrate significant performance improvement over standard codecs even under the same conditions as block-based. Block-based learned compression model can provide compatibility with conventional standard codecs, solve memory problems, and can perform significantly better against phase-only hologram compression.

Video Chatting using MPEG-4 in Mobile IPv6 Networks (Mobile IPv6환경에서 MPEG-4를 이용한 화상채팅시스템)

  • Choe, Yun-Ju;Yun, Won-Dong;Kim, Pyung-Soo;Kim, Young-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.203-205
    • /
    • 2004
  • We propose a video chatting algorithm using MPEG-4 over Mobile IPv6. This real-time system transmits video and character data based on UDP. To send data efficiently within limited bandwidth, we use a standard multimedia compression algorithm, MPEG-4, that encodes video data and mobile IPv6 guarantees effective mobility. This system presents the example of the mobile multimedia applications that will be the solution for the next internet services.

  • PDF

RATE-DISTORTION OPTIMAL BIT ALLOCATION FOR HIGH DYNAMIC RANGE VIDEO COMPRESSION

  • Lee, Chul;Kim, Chang-Su
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.207-210
    • /
    • 2009
  • An efficient algorithm to compress high dynamic range (HDR) videos is proposed in this work. We separate an HDR video sequence into a tone-mapped low dynamic range (LDR) sequence and a ratio sequence. Then, we encode those two sequences using the standard H.264/AVC codec. During the encoding, we allocate a limited amount of bit budget to the LDR sequence and the ratio sequence adaptively to maximize the qualities of both the LDR and HDR sequences. While a conventional LDR decoder uses only the LDR stream, an HDR decoder can reconstruct the HDR video using the LDR stream and the ratio stream. Simulation results demonstrate that the proposed algorithm provides higher performance than the conventional methods.

  • PDF