• Title/Summary/Keyword: vibratory gyroscope

Search Result 30, Processing Time 0.023 seconds

Improvement of Sense Mode Bandwidth of Vibratory Silicon-On-Glass Gyroscope Using Dual-Mass System (이중 질량체를 사용한 진동형 자이로스코프의 검출부 대역폭 개선)

  • Hwang, Yong-Suk;Kim, Yong-Kweon;Ji, Chang-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1733-1740
    • /
    • 2011
  • In this research, a MEMS vibratory gyroscope with dual-mass system in the sensing mode has been proposed to increase the stability of the device using wide bandwidth. A wide flat region between the two resonance peaks of the dual-mass system removes the need for a frequency matching typically required for single mass vibratory gyroscopes. Bandwidth, mass ratio, spring constant, and frequency response of the dual-mass system have been analyzed with MATLAB and ANSYS simulation. Designed first and second peaks of sensing mode are 5,917 and 8,210Hz, respectively. Driving mode resonance frequency of 7,180Hz was located in the flat region between the two resonance peaks of the sensing mode. The device is fabricated with anodically bonded silicon-on-glass substrate. The chip size is 6mm x 6mm and the thickness of the silicon device layer is $50{\mu}m$. Despite the driving mode resonance frequency decrease of 2.8kHz and frequency shift of 176Hz from the sensing mode due to fabrication imperfections, measured driving frequency was located within the bandwidth of sensing part, which validates the utilized dual-mass concept. Measured bandwidth was 768Hz. Sensitivity calculated with measured displacement of driving and sensing parts was 22.4aF/deg/sec. Measured slope of the sensing point was 0.008dB/Hz.

The Design of a 2-Dim stabilizing System Using the DSP(TMS320F240), Gyroscope, Direct Driving motor/ driver (DSP(TMS320F240), 자이로센서, 직접드라이버/ 전동기를 이용한 2차원 안정화 시스템 설계)

  • 류정오
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.1025-1030
    • /
    • 2001
  • As the pre-stage of making 3D stabilizing systems, at this paper designed 2D stabilizing system. This is composed of two axes stabilizing platform to preserve targeted direction while vehicle is moving. The system maintains stabilization by recovering error using the rate gyro with DSP TMS320F240 as controller, vibratory rate gyro (Tokimec co. TFG -l60D) as gyro scope, SD1015B52-1·SD1004C04-l/DM1015B DM1004C as direct drive driver/motor, PI control as control algorithm. This paper got a comparably good stabilization.

  • PDF

Veering Phenomena and Dynamic Characteristics in Lateral Micro-Gyroscope (수평형 마이크로 자이로스코프의 비어링 현상 및 동특성)

  • 정호섭;박규연
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.132-140
    • /
    • 2001
  • The vibratory gyroscope can effectively measure the angular velocity as the oscillating and position-sensing mode are exactly tuned. The veering Phenomenon impedes the exact tuning, which is caused by the mode coupling of two modes. In this paper, the gyroscope's structure with two frames is introduced to minimize the veering phenomenon that destabilizes the tuning process of oscillating and position-sensing mode. Experimental results show that the Proposed structure can achieve the mode intersection without veering phenomenon.

  • PDF

A High Yield Rate MEMS Gyroscope with a Packaged SiOG Process (SiOG 공정을 이용한 고 신뢰성 MEMS 자이로스코프)

  • Lee Moon Chul;Kang Seok Jin;Jung Kyu Dong;Choa Sung-Hoon;Cho Yang Chul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.187-196
    • /
    • 2005
  • MEMS devices such as a vibratory gyroscope often suffer from a lower yield rate due to fabrication errors and the external stress. In the decoupled vibratory gyroscope, the main factor that determines the yield rate is the frequency difference between the sensing and driving modes. The gyroscope, fabricated with SOI (Silicon-On-Insulator) wafer and packaged using the anodic bonding, has a large wafer bowing caused by thermal expansion mismatch as well as non-uniform surfaces of the structures caused by the notching effect. These effects result in large distribution in the frequency difference, and thereby a lower yield rate. To improve the yield rate we propose a packaged SiOG (Silicon On Glass) technology. It uses a silicon wafer and two glass wafers to minimize the wafer bowing and a metallic membrane to avoid the notching. In the packaged SiOG gyroscope, the notching effect is eliminated and the warpage of the wafer is greatly reduced. Consequently the frequency difference is more uniformly distributed and its variation is greatly improved. Therefore we can achieve a more robust vibratory MEMS gyroscope with a higher yield rate.

  • PDF

Robust Optimal Design of a Decoupled Vibratory Microgyroscope Considering Fabrication Influence (공정영향을 고려한 비연성 진동형 마이크로 자이로스코프의 강건 최적 설계)

  • Jeong Hee-Moon;Ha Sung Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1065-1074
    • /
    • 2004
  • A robust optimal design considering fabrication influence has been performed for the decoupled vibratory microgyroscope fabricated by the bulk micromachining. For the analysis of the gyroscope, a design tool has been developed, by which user can perform the system level design considering electric signal process and the fabrication influence as well as mechanical characteristics. An initial design of the gyroscope is performed satisfying the performances of scale factor (or sensitivity) and phase delay, which depend on the frequency difference between driving and sensing resonant frequencies. The objective functions are formulated in order to reduce the variances of the frequency difference and the frequency in itself by fabrication error. To certify the results, the standard deviations are calculated through the Monte Caries Simulation (MCS) and compared initial deviation that is measured fabricated gyroscope chip.

Signal Detection and Control of Hemispherical Resonator Gyroscopes (반구형 공진 자이로스코프의 신호 검출 및 제어)

  • Hyun, Chul;Kang, Tae-Sam
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.204-210
    • /
    • 2012
  • In this paper, signal detection and control circuits for hemispherical resonator gyroscope(HRG) are designed, simulated and tested. HRG is one of the coriolis vibratory gyroscope(CVG) which has very stable quartz hemispherical resonator and shows very precise performance. HRG signals are usually modulated at the several kHz of resonant frequency. So the general control scheme cannot be applied directly because general control schemes mainly focused at low frequency range. Using demodulated and modulated PI control scheme with the signal detection which is presented in this paper, performance of manufactured HRG has tested.

On the control of vibratory MEMS gyroscopes

  • Choura, S.;Aouni, N.;El-Borgi, S.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.793-810
    • /
    • 2010
  • This paper addresses the control issue of vibratory MEMS-based gyroscopes. This study considers a gyroscope that can be modeled by an inner mass attached to an outer mass by four springs and four dampers. The outer mass itself is attached to the rotating frame by an equal number of springs and dampers. In order to measure the angular rate of the rotating frame, a driving force is applied to the inner mass and the Coriolis force is sensed along the y-direction associated with the outer mass. Due to micro-fabrication imperfections, including anisoelasticity and damping effects, both gyroscopes do not allow accurate measurements, and therefore, it becomes necessary to devise feedback controllers to reduce the effects of such imperfections. Given an ideal gyroscope that meets certain performance specifications, a feedback control strategy is synthesized to reduce the error dynamics between the actual and ideal gyroscopes. For a dual-mass gyroscope, it is demonstrated that the error dynamics are remarkably decreased with the application of four actuators applied to both masses in the x and y directions. It is also shown that it is possible to reduce the error dynamics with only two actuators applied to the outer mass only. Simulation results are presented to prove the efficiency of the proposed control design.

Design and Vibration Analysis of Tri-axis Linear Vibratory MEMS Gyroscope

  • Seok, Seyeong;Moon, Sanghee;Kim, Kanghyun;Kim, Suhyeon;Yang, Seongjin;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.235-238
    • /
    • 2017
  • In this study, the design of a tri-axis micromachined gyroscope is proposed and the vibration characteristic of the structure is analyzed. Tri-axis vibratory gyroscopes that utilize Coriolis effect are the most commonly used micromachined inertial sensors because of their advantages, such as low cost, small packaging size, and low power consumption. The proposed design is a single structure with four proof masses, which are coupled to their adjacent ones. The coupling springs of the proof masses orthogonally transfer the driving vibrational motion. The resonant frequencies of the gyroscope are analyzed by finite element method (FEM) simulation. The suspension beam spring design of proof masses limits the resonance frequencies of four modes, viz., drive mode, pitch, roll and yaw sensing mode in the range of 110 Hz near 21 kHz, 21173 Hz, 21239 Hz, 21244 Hz, and 21280 Hz, respectively. The unwanted modes are separated from the drive and sense modes by more than 700 Hz. Thereafter the drive and the sense mode vibrations are calculated and simulated to confirm the driving feasibility and estimate the sensitivity of the gyroscope. The cross-axis sensitivities caused by driving motion are 1.5 deg/s for both x- and y-axis, and 0.2 deg/s for z-axis.

The effect of magnetic flux interference on the planar vibratory gyroscope driven by electromagnetic force (전자력을 이용한 평면 진동형 각속도계의 자속간섭의 영향)

  • Hong, Seung-Wan;Lee, Sang-Hun;Lim, Hyung-Taek;Kim, Young-Kweon;Lee, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1425-1427
    • /
    • 1995
  • The effect of the magnetic flux interference between the driving and detecting unit of the gyroscope by the electromagnetic force has been investigated quantitatively. The key parameter dictating the output characteristics of the gyroscope which is driven and detected using electromagnetic force is the mutual interference between the driving and detecting unit. Using the specially designed apparatus for positioning of the detecting unit, it is found that the vertical positioning of the detecting unit plays a significant role in minimizing the interference effect as evidenced by our experimental results.

  • PDF

Imperfection Parameter Observer and Drift Compensation Controller Design of Hemispherical Resonator Gyros

  • Pi, Jaehwan;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.379-386
    • /
    • 2013
  • The hemispherical resonator gyroscope is a type of vibratory gyroscope, which can measure angle or angular rate, based on its operating mode. This paper deals with the case when the hemispherical resonator gyroscope is operated in angle measurement mode. In angle measurement mode, the resonator pattern angle precesses, with respect to the external rotation input, by the principle of the Coriolis effect, so that the external rotation can be estimated, by measuring the amount of precession angle. However, this pattern angle drifts, due to the manufacturing error of the resonator. Since the drift effect causes degradation of the angle estimation performance of the resonator, the corresponding drift compensation control should be performed, to enhance the estimation performance. In this paper, a mathematical model of the hemispherical resonator gyro is first introduced. By using the mathematical model, a nonlinear observer for imperfection parameter estimation, and the corresponding compensation controller are designed to operate hemispherical resonator gyros, as angle measurement sensors.