• Title/Summary/Keyword: vibration sensor

Search Result 1,201, Processing Time 0.036 seconds

Displacement Measurement of Multi-Point Using a Pattern Recognition from Video Signal (영상 신호에서 패턴인식을 이용한 다중 포인트 변위측정)

  • Jeon, Hyeong-Seop;Choi, Young-Chul;Park, Jong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.675-680
    • /
    • 2008
  • This paper proposes a way to measure the displacement of a multi-point by using a pattern recognition from video signal. Generally in measuring displacement, gab sensor, which is a displacement sensor, is used. However, it is difficult to measure displacement by using a common sensor in places where it is unsuitable to attach a sensor, such as high-temperature areas or radioactive places. In this kind of places, non-contact methods should be used to measure displacement and in this study, images of CCD camera were used. When displacement is measure by using camera images, it is possible to measure displacement with a non-contact method. It is simple to install and multi-point displacement measuring device so that it is advantageous to solve problems of spatial constraints.

  • PDF

Trajectory of Resonant Displacement of Coupled Vibration Mode Piezoelectric Devices for AE Sensor Application (음향방출 센서 응용을 위한 결합진동 모드 압전소자의 공진 변위 궤적)

  • Jeong, Yeong-Ho;Shin, Sang-Hoon;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.114-118
    • /
    • 2013
  • In this study, coupled mode piezoelectric devices for AE sensor application with excellent displacement and piezoelectric characteristics were simulated using ATILA FEM program, and then fabricated. Displacements and electromechanical coupling factors of the piezoelectric devices were investigated. The simulation results showed that excellent displacement and electromechanical coupling factor were obtained when the ratio of diameter/thickness was 1.0. The piezoelectric device of ${\Phi}/T$= 1.0 exhibited the optimum values of fr= 406 kHz, displacement= $6.11{\times}10^{-8}[m]$, $k_{eff}$= 0.648. The results show that the coupled vibration mode piezoelectric device is a promising candidate for the application of AE sensor piezoelectric device.

Strain Sensor Application using Cellulose Electro-Active Paper (EAPap) (셀룰로오스 기반 Electro-Active Paper (EAPap)를 이용한 변형률 센서 응용)

  • Jang, Sang-Dong;Lee, Sang-Woo;Kim, Joo-Hyung;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.462-465
    • /
    • 2009
  • Cellulose based electro-active paper (EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. Beside of the natural abundance, cellulose EAPap is fascinating with its biodegradability, lightweight, high mechanical strength and low actuation voltage. An actuating mechanism of EAPap is revealed to be the combination of ion migration effect and piezoelectricity. EAPap can generate the electrical current and voltage when the mechanical stress applied due to its electro-mechanical characteristics. In this paper, we investigated the feasibility of EAPap as a mechanical strain sensor.

  • PDF

Development of Shell Element to Analyze an Intelligent Structure with Piezoelectric Sensor/Actuator (압전 감지기/작동기를 포함하는 쉘 요소의 개발)

  • 황우석;오진택;박현철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.225-228
    • /
    • 2001
  • A new three-dimensional thin shell element for the structure containing an integrated distributed piezoelectric sensor and actuator is proposed. A finite element formulation for the static response of the shell with piezoelectric sensor/actuator is derived. The assumed strain formulation and the bubble function improves the performance of the shell element. The verification through the calculation of the static response for the piezoelectic bimorph beam shows that the results agree with those from the theoretical analysis very well.

  • PDF

Innovative cable force monitoring of stay cables using piezoelectric dynamic strain responses

  • Nguyen, Khac-Duy;Huynh, Thanh-Canh;Lee, Ji-Yong;Shin, Sung Woo;Kim, Jeong-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.830-834
    • /
    • 2013
  • This study presents a method to monitor cable force of a long-span cable-stayed bridge using a smart piezoelectric sensor system. The following approaches are implemented in order to achieve the objective. Firstly, the method to utilize piezoelectric materials for the health monitoring of stay cables is presented. For strain measurement of a stay cable, a PZT-embedded smart skin is designed to overcome the difficulties of bonding PZT sensors directly on stay cables. Secondly, a piezoelectric strain monitoring system for stay cables is designed. For the operation of the sensor board, the Imote2 sensor platform is used to provide the computation, wireless communication and power supply units. The feasibility of the proposed monitoring system is then evaluated on a full-scale cable of a cable-stayed bridge.

  • PDF

Sensor Based Bridge Monitoring System (센서기반 교량 유지관리 시스템)

  • 장정환;김완종;안호현;이세호;정태영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.602-607
    • /
    • 2003
  • Sensors based bridge monitoring system (SBBMS) is designed to perform real-time monitoring and to store the performance history of in-service bridges. In general, visual inspections play a major role in maintenance of in-service bridges; however, they are not adequate to document the behavior of a bridge. Therefore, visual inspections and sensor based monitoring systems complement each other. Sensor based bridge monitoring systems consist of hardware and software systems. The hardware system contains the sensors and data-loggers to measure the behavior of a structure, the communicational equipment to transmit the measured data from the site to the monitoring center, and the computers to arrange and analyze the data. The software system controls data-loggers, arranges and analyzes the measured data, makes real-time display, stores the performance history.

  • PDF

Displacement Measurement of Multi-point Using a Pattern Recognition from Video Signal (영상 신호에서 패턴인식을 이용한 다중 포인트 변위측정)

  • Jeon, Hyeong-Seop;Choi, Young-Chul;Park, Jong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1256-1261
    • /
    • 2008
  • This paper proposes a way to measure the displacement of a multi-point by using a pattern recognition from video signal. Generally in measuring displacement, gab sensor, which is a displacement sensor, is used. However, it is difficult to measure displacement by using a common sensor in places where it is unsuitable to attach a sensor, such as high-temperature areas or radioactive places. In this kind of places, non-contact methods should be used to measure displacement and in this study, images of CCD camera were used. When multi-point is measure by using a pattern recognition, it is possible to measure displacement with a non-contact method. It is simple to install and multi-point displacement measuring device so that it is advantageous to solve problems of spatial constraints.