• Title/Summary/Keyword: vibration reduction and control

Search Result 487, Processing Time 0.03 seconds

Design Parameter Analysis of a Dynamic Absorber for the Control of Machine Body Vibration (기계 진동의 수동적 제어를 위한 동흡진기 설계인자 해석)

  • Kim, Giman;Choi, Seongdae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The optimal design parameters of a dynamic absorber (DA) in a machine body (that is considered as a rigid body) are discussed in this paper. The bounce and rotation motions of the rigid body have been controlled passively by a DA, which consists of a mass and a spring. The rigid body is subjected to a harmonically excited force and supported by linear springs at both ends. To define the motion of a rigid body with a DA, the equation of motion was expressed in the third-order matrix form. To define the optimal design conditions of a DA, the reduction of dynamic characteristics, represented by the amplitudes of bounce and rotation, and the transmitted powers, were evaluated and discussed. The level of reduction was found to be highly dependent on the location and spring stiffness of the DA.

Displacement Response Properties of Spatial Structures and High-Rise Buildings According to the Change of TMD Mass (TMD 설치 질량 변화에 따른 대공간 구조물과 고층건물의 변위 응답 특성)

  • Lee, Young-Rak;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.107-116
    • /
    • 2020
  • In this paper, the displacement response to seismic loads was analyzed after installing TMD in spatial structures and high-rise buildings. In the case of a spatial structures, since it exhibits complex dynamic behavior under the influence of various vibration modes, it is not possible to effectively control the seismic response by installing only one TMD, unlike ordinary structures. Therefore, after installing eight TMDs in the structure, the correlation between displacement response and mass ratio was examined while changing the mass. The TMD must be designed to have the same frequency as the structure frequency so that the maximum response reduction effect can be exhibited. It can be confirmed that the most important variable is to select the optimal TMD mass in order to install the TMD on the structure and secure excellent control performance against the earthquake load. As a result of analyzing the TMD mass ratio, in the case of high-rise buildings, a mass ratio of 0.4% to 0.6% is preferable. In spatial structures, it is desirable to select a mass ratio of 0.1% to 0.2%. Because this study is based on the theoretical study based on numerical analysis, in order to design a TMD for a real structure, it is necessary to select within a range that does not affect the safety of the structure.

Development of Single-phase Brushless DC Motor with Outer Rotor for Ventilation Fan (환풍기용 외전형 단상 브러시리스 직류전동기 개발)

  • Park, Yong-Un;Jeong, Hak-Gyun;Cho, Ju-Hee;So, Ji-Yong;Jung, Dong-Hwa;Kim, Dae-Kyong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.36-41
    • /
    • 2013
  • This paper is development of single-phase brushless DC motor with outer rotor for ventilation fan. Cogging torque causes the noise vibration to greatest impact on ventilation fan. Asymmetric notches are applied to tapered-teeth for cogging torque reduction of single-phase brushless DC motor. Initial model is notchless and proposed model is applied 2 asymmetric notches. The proposed method is proved motor characteristic through finite element analysis(FEA). Also, experimental results verify that the proposed model considerably reduces cogging torque and have the good sound quality in ventilation system.

On-orbit Thermal Characteristic for Multilayered High Damping Yoke Structure Based on Superelastic Shape Memory Alloy for Passive Vibration Control of Solar Panels (태양전지판의 수동형 제진을 위한 초탄성 형상기억합금 기반 적층형 고댐핑 요크 구조의 궤도상 열적 특성 분석)

  • Min-Young Son;Jae-Hyeon Park;Bong-Geon Chae;Sung-Woo Park;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In a previous study, a structure of a superplastic yoke consisting of a thin FR4 layer laminated with viscoelastic tape on both sides of a shape memory alloy (SMA) was proposed to reduce residual vibration generated by a deployable solar panel during high motion of a satellite. Damping properties of viscoelastic tapes will change with temperature, which can directly affect vibration reduction performance of the yoke. To check damping performance of the yoke at different temperatures, free damping tests were performed under various temperature conditions to identify the temperature range where the damping performance was maximized. Based on above temperature test results, this paper predicts temperature of the yoke through orbital thermal analysis so that the yoke can have effective damping performance even if it is exposed to an orbital thermal environment. In addition, the thermal design method was described so that the yoke could have optimal vibration reduction performance.

Electrical Noise Reduction in the Electromagnetic Shaker System using a Class-D Amplifier (Class-D 증폭기를 사용한 가진기 시스템의 전기적 잡음 감소)

  • 윤을재;김인식;한태균
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.12-22
    • /
    • 1999
  • Operation of an electromagnetic shaker system using a Class-D amplifier may cause unacceptable electromagnetic interference to another electronic system, requiring the user to take whatever steps are necessary to correct the interference. A differential amplifier in a Class-D amplifier is used to decrease the effect of a common-mode noise voltage in a shaker system. To prevent a ground loop, a transformer is inserted in another shaker system. These methods show reduction of the unwanted vibration which has occurred before. A transformer in a charge amplifier was used to prevent a ground loop in a shaker system using a Class-AB amplifier a few years ago, but it was susceptible of noise in a shaker system using a Class-D amplifier. Hence we corrected a ground loop between a charge amplifier and a vibration control/analysis system without a transformer. The usefulness of this approach is illustrated by the results of experiments.

  • PDF

Torque Ripple Reduction Algorithm of PM Synchronous Motor at High Speed Operation (영구자석 동기 전동기의 고속운전 시 토크리플 저감 알고리즘)

  • Kim, Jong-Hyun;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.429-436
    • /
    • 2015
  • Torque ripples generate mechanical vibration at low speed and acoustic noise at high speed. The back emf harmonics of a PM synchronous motor is one of the main sources of torque ripples. To reduce torque ripples resulting from back emf harmonics, dq-axis harmonic currents that reduce the torque ripples are generally compensated to the current controller. Harmonic current compensation is effective at low speed, but it is not applicable at high speed because of the limited bandwidth of the current controller. In this study, dq-axis harmonic voltage compensation that can reduce torque ripples at high speed is proposed. The dq-axis harmonic voltages are calculated from the motor speed and the dq-axis harmonic currents. The effectiveness of the proposed method in reducing torque ripple is verified by a simulation and experiments.

ABC optimization of TMD parameters for tall buildings with soil structure interaction

  • Farshidianfar, Anooshiravan;Soheili, Saeed
    • Interaction and multiscale mechanics
    • /
    • v.6 no.4
    • /
    • pp.339-356
    • /
    • 2013
  • This paper investigates the optimized parameters of Tuned Mass Dampers (TMDs) for vibration control of high-rise structures including Soil Structure Interaction (SSI). The Artificial Bee Colony (ABC) method is employed for optimization. The TMD Mass, damping coefficient and spring stiffness are assumed as the design variables of the controller; and the objective is set as the reduction of both the maximum displacement and acceleration of the building. The time domain analysis based on Newmark method is employed to obtain the displacement, velocity and acceleration of different stories and TMD in response to 6 types of far field earthquakes. The optimized mass, frequency and damping ratio are then formulated for different soil types; and employed for the design of TMD for the 40 and 15 story buildings and 10 different earthquakes, and well results are achieved. This study leads the researchers to the better understanding and designing of TMDs as passive controllers for the mitigation of earthquake oscillations.

Overseas Design Introduction of Road Rehabilitation Project in Keshim~Faizabad, Afghanistan (아프가니스탄 케심-파이자베드간 도로복구사업 해외설계 사례)

  • Jeong, Dong-Ho;Kim, Woo-Sun;Kim, Gee-Baek;Jeong, Won-Joon;Lee, Seung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.569-580
    • /
    • 2008
  • If slope height was more than 20 meters, we conducted an analysis of stereographic projection and limit equilibrium at this slope. We proposed reduction of slope face angle and reinforcement of rock bolt depending on analysis. Blasting design : Standard pattern based on result of local test blasting was made for blasting design. Vibration criterion was set for less than 3.0mm/s because of outworn buildings and inhabitants opinions. Production blasting and Controlled blasting has been done as Construction standard pattern. After Vibration Monitoring has been done, so that we can control of complement. "Bidding Document" and AASHTO 2001 "A Policy on Geometric Design of Highways and Streets" were so for design criteria of earthwork but they were different actual design criteria and left something to be desired in Afghanistan. Therefore, although "Bidding Document" and "AASHTO 2001" were basic design criteria, domestic design criteria was reflected in this design criteria for complement by discussion with supervisor. Drainage design : For stability ratio, ditch of arch block and stonework was designed by rainfall data for the 13 years and discussion with supervisor. Pavement was designed as flexible pavement. Because these days in Afghanistan postwar repair works, especially urgent repairing of roads and newly making of roads, are very highly in progress, I think that Afghanistan is the region about which our construction technical experts should have great concerns.

  • PDF

Optimum Shape Design of Cemented Carbide Micro-Drill in Consideration of Productivity

  • Kim, Gun-Hoi;Kwon, Ji-Yong;Lee, Sung-Goo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.264-268
    • /
    • 2003
  • Recently reduction of industrial products in size and weight has been increased by application of micro-drills in gadgets of high precision and a great interest of a micro-drilling has been raised. Due to the lack of tool stiffness and the chip packing, the micro-drilling requires not only the robust tool structure which has not affected by vibration but also effective drilling methods designed to prevent tool fracture from cutting troubles. This paper presents an optimum design shape of a 0.15 mm micro-drill associated with a new manufacturing process to improve the production rate and to lengthen the tool life and suggestions on the micro-drilling characteristic properties associated with the tool life and workpiece quality.

  • PDF

원격운용 초고속 HMC 개발

  • Kim, Gi-Tae;Choi, Jae-Woo;Joo, Hyeok
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.456-461
    • /
    • 2002
  • Nowadays, there are required more speed and accurate machining in order to improve the productivity through the reduction of cutting and non-cutting time. In this study, the high-speed HMC is specially designed to do remote control and high-speed mechanism with 30000rpm, 50000rpm, 40m/min, 100m/min and bridge type structure. Every structural deformation and vibration that is generated from all of factor is analyzed being based on the virtual manufacturing technologies: thermal characteristic analysis, machine-ability, tool wear measuring system, driving characteristic of linear motor and so on. As the application of these results had been consisted of three axes to move slight and rigid finally. Therefore, table errors that are resulted in change of work weight can be removed.

  • PDF