• 제목/요약/키워드: vibration energy harvester

검색결과 125건 처리시간 0.028초

Increasing the performance of energy harvesting in vibration mode shapes

  • Jabbari, Majid;Ghayour, Mostafa;Mirdamadi, Hamid Reza
    • Advances in Computational Design
    • /
    • 제1권2호
    • /
    • pp.155-173
    • /
    • 2016
  • This paper presents a method of design for the energy harvesting of a piezoelectric cantilever beam. Vibration modes have strain nodes where the strain distribution changes in the direction of the beam length. Covering the strain nodes of the vibration modes with continuous electrodes effects a cancellation of the voltages outputs. The use of segmented electrodes avoids cancellations of the voltage for multi-mode vibration. The resistive load affects the voltage and generated power. The optimum resistive load is considered for segmented and continuous electrodes, and then the power output is verified. One of the effective parameters on energy harvesting performance is the existence of concentrated mass. This topic is studied in this paper. Resonance and off-resonance cases are considered for the harvester. In this paper, both theoretical and experimental methods are used for satisfactory results.

CMOS 공정에 적합한 AlN 압전 마이크로 발전기의 제작 및 특성 (Fabrication of AlN piezoelectric micro power generator suitable with CMOS process and its characteristics)

  • 정귀상;이병철
    • 센서학회지
    • /
    • 제19권3호
    • /
    • pp.209-213
    • /
    • 2010
  • This paper describes the fabrication and characteristics of AlN piezoelectric MPG(micro power generator). The micro energy harvester was fabricated to convert ambient vibration energy to electrical power as a AlN piezoelectric cantilever with Si proof-mass. To be compatible with CMOS process, AlN thin film was grown at low temperature by RF magnetron sputtering and micro power generators were fabricated by MEMS technologies. X-ray diffraction pattern proved that the grown AlN film had highly(002) orientation with low value of FWHM(full width at the half maximum, $\theta=0.276^{\circ}$) in the rocking curve around(002) reflections. The implemented harvester showed the $198.5\;{\mu}m$ highest membrane displacement and generated 6.4 nW of electrical power to $80\;k{\Omega}$ resistive load with $22.6\;mV_{rms}$ voltage from 1.0 G acceleration at its resonant frequency of 389 Hz. From these results, the AlN piezoelectric MPG will be possible to suitable with the batch process and confirm the possibility for power supply in portable, mobile and wearable microsystems.

압전 캔틸레버 구조를 이용한 도로용 에너지 하베스터의 개발 및 평가 (Development and Evaluation of the Road Energy Harvester Using Piezoelectric Cantilevers)

  • 김창일;김경범;전종학;정영훈;조정호;백종후;강인석;이무용;최범진;조영봉;박신서;남산;이영진
    • 한국전기전자재료학회논문지
    • /
    • 제25권7호
    • /
    • pp.511-515
    • /
    • 2012
  • A road energy harvester was designed and fabricated to convert mechanical energy from the vehicle load to electrical energy. The road energy harvester is composed of 24 piezoelectric cantilevers and a vehicle load transfer mechanism. Applying a vehicle load transfer mechanism rather than directly installing energy harvesters under roads decreases the area of road construction and allows more energy harvesters to be installed on the side of the road. The power generation amount with respect to the vehicular velocity change was assessed by installing the vehicle load transfer mechanism and the energy harvester in the form of speed bumps and underground. The energy harvester installed in a speed bump form generated power of 7.61 mW at the vehicular velocity of 20 km/h. Also, power generation of the energy harvester installed in the underground form was 63.9 mW at the vehicular velocity of 28 km/h. Although the number of piezoelectric cantilevers was reduced by 1/3 to 24 in comparison to the previous research results with 72 piezoelectric cantilevers, similar power generation characteristic value was obtained within the vehicular velocity of 20 km/h by altering the vehicle load transfer mechanism and cantilever vibration method.

자석바퀴기반 자기변형 에너지하베스터의 개념증명 (Proof-of-Concept of Magnetic Wheel-Based Magnetostrictive Energy Harvester)

  • 신봉희;박영우
    • 한국정밀공학회지
    • /
    • 제32권5호
    • /
    • pp.483-490
    • /
    • 2015
  • This paper presents a proof-of-concept of a wheel-based magnetostrictive energy harvester (EH), which is a vibration-based EH. Coil-wound Galfenol cantilevers with two permanent magnets (PMs) act EH, while rotating wheels provide a forced vibration to EH. Four different cantilevers are designed and simulated for various end deflection. As expected from the simulation, the cantilever end deflection with triple cavity is the most. Three experiments are conducted to characterize the EH: the first with a magnetostrictive actuator, the second with a motor-driven wheel, and the third with the dummy weights. From the first experiment, the power reaches about 50 mV due to the relatively small displacement of the magnetostrictive actuator. From the second experiment, the power reaches about 120 mW. The power from the Galfenol cantilever is estimated to be about 60% of the total power from the wheel-based magnetostrictive EH.

외팔보 압전 진동 에너지 수확 장치의 직류 전기 출력 해석을 위한 전용 알고리즘 개발 (Development of a Dedicated Algorithm for the Analysis of DC Electrical Outputs of Cantilevered Piezoelectric Vibration Energy Harvesters)

  • 김재은;김윤영
    • 한국소음진동공학회논문집
    • /
    • 제22권9호
    • /
    • pp.896-902
    • /
    • 2012
  • For most applications of the vibration energy harvesting technology as in wireless sensor networks for smart buildings and plants, the evaluation of DC output performance of vibration energy harvesters is typically required. However, there is no dedicated algorithm for the evaluation. The lack of a dedicated algorithm results from difficulties in the direct incorporation of nonlinear rectifying and regulating circuitry into finite element models of piezoelectric vibration energy harvesters. In this study, we develop a dedicated algorithm and present software based on it for the evaluation of not only AC but also DC electrical quantities. Here, an equivalent electrical circuit model is employed. The COMSOL multiphysics simulation tool is adopted for extracting equivalent electrical circuit parameters of a piezoelectric vibration energy harvester and MATLAB is used to make a graphical user interface. The AC voltage and power outputs calculated by the proposed algorithm under various conditions are compared with those by a traditional finite element analysis. The DC output voltage and power through a rectifier are obtained for varying values of smoothing capacitance and external resistance.

간접 충격을 이용한 압전 방식 진동형 에너지 하베스터 (Piezoelectric Vibration Energy Harvester Using Indirect Impact)

  • 주선아;지창현
    • 전기학회논문지
    • /
    • 제66권10호
    • /
    • pp.1499-1507
    • /
    • 2017
  • This paper presents an impact-based piezoelectric vibration energy harvester using a freely movable metal sphere and a piezoceramic fiber-based MFC (Macro Fiber Composite) as piezoelectric cantilever. The free motion of the metal sphere, which impacts both ends of the cavity in an aluminum housing, generates power across a cantilever-type MFC beam in response to low frequency vibration such as human-body-induced motion. Impacting force of the spherical proof mass is transformed into the vibration of the piezoelectric cantilever indirectly via the aluminum housing. A proof-of-concept energy harvesting device has been fabricated and tested. Effect of the indirect impact-based system has been tested and compared with the direct impact-based counterpart. Maximum peak-to-peak open circuit voltage of 39.8V and average power of $598.9{\mu}W$ have been obtained at 3g acceleration at 18Hz. Long-term reliability of the fabricated device has been verified by cyclic testing. For the improvement of output performance and reliability, various devices have been tested and compared. Using device fabricated with anodized aluminum housing, maximum peak-to-peak open-circuit voltage of 34.4V and average power of $372.8{\mu}W$ have been obtained at 3g excitation at 20Hz. In terms of reliability, housing with 0.5mm-thick steel plate and anodized aluminum gave improved results with reduced power reduction during initial phase of the cyclic testing.

압전에너지 수확을 위한 공진형 부스트 컨버터 (Resonant Boost Converter for Harvesting Piezoelectric Energy)

  • 김혁진;정교범
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 추계학술대회 논문집
    • /
    • pp.407-410
    • /
    • 2009
  • A piezoelectric device which converts mechanical vibration energy into electrical energy is able to harvest energy and the usable energy is mW ${\sim}$ W, hence a converter is necessary to acquire the energy efficiently. Various limited conditions should be considered for the design of AC/DC converter for energy harvesting of a piezoelectric device supplying small amount of energy. In addition to simple structure, compact size, light weight and high efficiency, the energy harvesting AC!DC converter should adopt the technique of self operating, in which only the harvested energy from the piezoelectric device is available. This paper proposes new AC/DC resonant boost converter to harvest efficiently electrical energy from mechanical vibration energy, analyzes the operating characteristics of the converter and proves its feasibility for energy harvester with PSPICE simulation and experiment.

  • PDF

벌집형 압전 발전 소자의 구동방식에 따른 출력 특성 (A Study on the Generating Characteristics Depending on Driving System of a Honeycomb Shaped Piezoelectric Energy Harvester)

  • 정성수;강신출;박태곤
    • 한국전기전자재료학회논문지
    • /
    • 제28권2호
    • /
    • pp.69-74
    • /
    • 2015
  • Recently, energy harvesting technology is increasing due to the fossil fuel shortages. Energy harvesting is generating electrical energy from wasted energies as sunlight, wind, waves, pressure, and vibration etc. Energy harvesting is one of the alternatives of fossil fuel. One of the energy harvesting technologies, the piezoelectric energy harvesting has been actively studied. Piezoelectric generating uses a positive piezoelectric effect which produces electrical energy when mechanical vibration is applied to the piezoelectric device. Piezoelectric energy harvesting has an advantage in that it is relatively not affected by weather, area and place. Also, stable and sustainable energy generation is possible. However, the output power is relatively low, so in this paper, newly designed honeycomb shaped piezoelectric energy harvesting device for increasing a generating efficiency. The output characteristics of the piezoelectric harvesting device were analyzed according to the change of parameters by using the finite element method analysis program. One model which has high output voltage was selected and a prototype of the honeycomb shaped piezoelectric harvesting device was fabricated. Experimental results from the fabricated device were compared to the analyzed results. After the AC-DC converting, the power of one honeycomb shaped piezoelectric energy harvesting device was measured 2.3[mW] at road resistance 5.1[$K{\Omega}$]. And output power was increased the number of harvesting device when piezoelectric energy harvesting device were connected in series and parallel.

미소진동 발생원으로부터의 전기에너지 재생 및 진동절연을 위한 복합 시스템의 해석적 검토 (Numerical Investigation of Complex System for Electrical Energy Harvesting and Vibration Isolation)

  • 권성철;조문신;오현웅
    • 한국항공우주학회지
    • /
    • 제42권8호
    • /
    • pp.648-653
    • /
    • 2014
  • 플라이 휠, 구동형 안테나, 기계식 자이로, 냉각기 등과 같이 기계적 구동부를 갖는 탑재장비는 궤도 운용 시 미소진동을 발생한다. 고해상도 관측위성의 영상품질 향상을 위해서는 주로 진동발생원으로부터의 미소진동이 주요 임무장비에 전달되지 않도록 진동절연기의 적용 등 추가적인 기술적 노력들이 요구된다. 본 연구에서는 항상 차폐의 대상으로 여겨진 미소진동에 주목하여 이로부터 전기에너지 재생이 가능하고 동시에 진동절연이 가능한 복합 시스템 구현을 위해 동 흡진기 형 전자기 하베스터와 결합된 수동형 진동절연 시스템을 제안하였으며, 수치해석을 통해 복합 시스템의 유효성을 입증하였다.

진동 각도에 따른 유니몰프 압전 캔틸레버의 발전특성연구 (Power Generation Characteristics of Uni-morph Piezoelectric Cantilever with Different Vibration Angle)

  • 김창일;윤지선;박운익;정영훈;홍연우;조정호;백종후
    • 센서학회지
    • /
    • 제26권2호
    • /
    • pp.107-113
    • /
    • 2017
  • Energy source of a piezo-electric harvester is vibration. Sources of vibration are machineries operated with high frequencies, constructions and people operated with low frequencies and etc. In this study, we tried to figure out power generation properties over vibrations upon angles of a piezo-cantilever for applying them to movements of the construction and/or people, which are vibration sources at low frequencies. A uni-morph cantilever with a $59mm{\times}29mm{\times}0.2mm$ piezo-electric element attached on a $71mm{\times}46mm{\times}0.25mm$ copperplate was used. A spring was attached to the lower side of the cantilever and a mass was attached on the opposite side. Also, a structure with a specific angle which is an angle in between the ground and the cantilever was prepared and then, connected to a spring or the cantilever. Then, this structure was divided into the A-type and B-type and excited in the direction of z- axis. After that, the angle between the ground and the cantilever was changed and excited by 1 to 10 Hz upon the existence of a spring and/or a mass to compare power generation properties.