• Title/Summary/Keyword: viable bacteria

Search Result 806, Processing Time 0.025 seconds

Effect of Lactococcus lactis 1370 on the Formation of Artificial Plaque (Lactococcus lactis 1370가 인공치태 형성에 미치는 영향)

  • Chung, Jin;Yim, Sung-Yee;Oh, Jong-Suk
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.1
    • /
    • pp.77-85
    • /
    • 2000
  • Streptococcus mutans is the most important causative bacteria of dental caries among the oral bacteria. Lactococcus lactis 1370 was isolated from the oral cavity of child. The effect of Lactococcus lactis 1370 on the formation of artificial plaque by Streptococcus mutans was studied. 1. The insoluble substances and bacteria were much more attached on the wall of disposable cuvette in the culture of Streptococcus mutans than in the combined culture of Streptococcus mutans and Lactococcus lactis 1370. 2. The mean weight of produced artificial plaque on the wires in the beaker was 131.7 mg in the culture of Streptococcus mutans only, whereas being reduced to 6.4 mg in the combined culture of Streptococcus mutans and Lactococcus lactis 1370 (p<0.05). The viable cell didn't show the significant difference between them after culturing. 3. When Streptococcus mutans was cultured in the media containing culture supernatant of Lactococcus lactis 1370 cultured in M17 broth containing 0.5% yeast extract and 5% sucrose, the mean weight of produced artificial plaque was 8.0 mg on the wires, whereas being 125.4 mg in the media without culture supernatant of Lactococcus lactis 1370 (p<0.05). The viable cell didn't show the significant difference between them after culturing. 4. When Streptococcus mutans was cultured in the media containing soluble polymer produced by Lactococcus lactis 1370, the mean weight of produced artificial plaque was significantly reduced compared with being cultured in the media without soluble polymer (p<0.05). The viable cell didn't show the significant difference between them after culturing. 5. The soluble polymer produced by Lactococcus lactis 1370 was glucan. 6. The glucan produced by Lactococcus lactis 1370 was water-soluble glucan containing ${\alpha}$-1,6-glucose linkage as the main linkage. These results suggest that the artificial plaque formed by Streptococcus mutans is inhibited by water-soluble glucan produced by Lactococcus lactis 1370.

  • PDF

Real Time Reverse Transcriptase-PCR to Detect Viable Enterobacteriaceae in Milk

  • Choi, Suk-Ho;Lee, Seung-Bae
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.851-857
    • /
    • 2011
  • This study was conducted to develop a real time reverse transcriptase-PCR (RT-PCR) method for the detection of viable Enterobacteriaceae in milk using primers based on the genes of ribosomal proteins S11 and S13 and to determine effects of heating and subsequent treatments on the threshold cycle (Ct) of the real time RT-PCR. Total RNA was isolated from 17 strains of bacteria including 11 strains of Enterobacteriaceae suspended in milk using a modified Tri reagent method. SYBR Green Master Mix was added to the RNA and the mixture was subjected to the real time RT-PCR. The Cts of eleven type strains of the Enterobacteriaceae in milk ($10^7$ cells) in the real time RT-PCR ranged from 21.5 to 24.6. However, the Cts of Pseudomonas fluorescens, Acinetobacter calcoaceticus, and three gram-positive bacteria were more than 40. The real time RT-PCR detected as low as $10^3$ cells in agarose gel electrophoresis. The Cts increased from 22.0 to 34.2 when milk samples contaminated with Escherichia coli ($10^7$ cells/mL) were heated at $65^{\circ}C$ for 30 min. In addition, subsequent incubation at $37^{\circ}C$ for 6 and 24 h increased the Cts further up to 36.2 and 37.2, respectively. Addition of RNase A to the bacterial suspension obtained from the heated milk and subsequent incubation at $37^{\circ}C$ for 1 h increased the Cts to more than 40. The results of this study suggests that pretreatment of bacterial cells heated in milk with RNase A before RNA extraction might enhance the ability to differentiate between viable and dead bacteria using real time RT-PCR.

Optimization of Lactic Acid Fermentation of Prickly Pear Extract

  • Son, Min-Jeong;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.1
    • /
    • pp.7-13
    • /
    • 2004
  • Lactic acid fermentation of prickly pear extract (PPE) was performed by Lactobacillus rhamnosus LS, Lactobacillus bulgaricus, and Lactobacillus brevis. The PPE was pasteurized to eliminate indigenous microorganisms as well as to dissolve the partially insoluble pulp. The PPE fermented without yeast extract by L. rhamnosus LS exhibited 0.57% acidity and 3.5${\times}$10$^{8}$ CFU/mL bacteria count. With the addition of 0.2% edible yeast extract the PPE fermented by L. rhamnosus LS exhibited 1.15% acidity,2.7${\times}$10$^{9}$ CFU/mL bacteria count and 95.0% retention of red color. When 5% fructose syrup was added, the PPE fermented by L. rhamnosus LS had 1.09% acidity, 6.5${\times}$10$^{8}$ CFU/mL, and 97.7% retention of red color. With 1∼3% (w/v) concentrations of starter, the PPE fermented by L. bulgaricus and L. brevis showed 0.97% and 0.65% acidities, respectively. The viable cell counts from L. rhamnosus LS fermentation were higher compared with those of other LAB. During cold storage at 4$^{\circ}C$, the viable cell count was well maintained for 3 weeks, but then rapidly decreased. The red pigment was highly stable during cold storage for 4 weeks. The pasteurized PPE fortified with 5% fructose syrup, 0.2% yeast extract, and 0.05% CaCO$_3$ was successfully fermented by inoculating with 3% LAB and incubating at 3$0^{\circ}C$ for 2 days. Both viable cell counts and the red color of the fermented PPE were well maintained during cold storage for 3 weeks.

Comparison of Phylogenetic Characteristics of Viable but Non-Culturable (VBNC) Bacterial Populations in the Pine and Quercus Forest Soil by 16S rDNA-ARDRA (16S rDNA-ARDRA법을 이용한 소나무림과 상수리나무림 토양 내 VBNC 세균군집의 계통학적 특성 비교)

  • Han Song-Ih;Kim Youn-Ji;Whang Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.116-124
    • /
    • 2006
  • In this study was performed to analyze quantitatively the number of viable but non-culturable bacteria in the Pine and Quercus forest soil by improved direct viable count (DVC) and plate count (PC) methods. The number of living bacteria of Pine and Quercus forest soil by PC method were less then 1% of DVC method. This result showed that viable but non-culturable (VBNC) bacteria existed in the forest soil with high percentage. Diversity and structure of VBNC bacterial populations in forest soil were analyzed by direct extracting of DNA and 16S rDNA-ARDRA from Pine and Quercus forest soil. Each of them obtained 111 clones and 108 clones from Pine and Quercus forest soil. Thirty different RFLP types were detected from Pine forest soil and twenty-six different RFLP types were detected from Quercus forest soil by HeaIII. From ARDRA groups, dominant clones were selected for determining their phylogenetic characteristics based on 16S rDNA sequence. Based on the 16S rDNA sequences, dominant clones from ARDRA groups of Pine forest soil were classified into 7 major phylogenetic groups ${\alpha}$-proteobacteria (12 clones), ${\gamma}$-proteobacteria (3 clones), ${\delta}$-proteobacteria (1 clone), Flexibacter/Cytophaga (1 clone), Actinobacteria (4 clones), Acidobacteria (4 clones), Planctomycetes (5 clones). Also, dominant clones from ARDRA groups of Quercus forest soil were classified into 6 major phylogenetic groups : ${\alpha}$-proteobacte,ia (4clones), ${\gamma}$-proteobacteria (2 clones), Actinobacteria (10 clones), Acidobacteria (8 clones), Planctomycetes (1 clone), and Verrucomicobia (1 clone). Result of phylogeneric analysis of microbial community from Pine and Quercus forest soils were mostly confirmed at uncultured or unidentified bacteria, VBNC bacteria of over 99% existent in forest soil were confirmed variable composition of unknown micro-organism.

Comparison of a PCR Kit and a Selective Medium to Detect Pathogenic Bacteria in Eggs (PCR Kit와 선택배지를 이용한 계란의 병원성세균 검출 비교 평가)

  • Kim, Dong-Ho;Yun, Hye-Jeong;Song, Hyun-Pa;Lim, Sang-Yong;Jo, Min-Ho;Jo, Cheo-Run
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.965-970
    • /
    • 2009
  • PCR technology has been widely used to detect and quantify microbial pathogens in foodstuffs, because the technique is rapid, sensitive, and selective. In this study, detection of contaminating pathogenic bacteria on shells of chicken eggs was performed using both a commercial multiplex polymerase chain reaction (PCR) kit and a viable count method employing a selective medium. The PCR kit was capable of detecting Campylobacter jejuni, Escherichia coli O157:H7, Staphylococcus aureus, Bacillus cereus, Vibrio parahaemolyticus, Listeria monocytogenes, Yersinia enterocolitica, Salmonella species, and Shigella species. Using the PCR method, five bacterial species were detected from 30 samples (33.3%) of 90 batches of eggs commercially available in a market. PCR products from B. cereus, S. aureus, L. monocytogenes, Y. enterocolitica, and E. coli O157:H7 were detected, and the numbers and frequencies of positive samples were 17 (18.8%), 12 (13.3%), 15 (16.6%), 16 (17.7%),and 4 (4.4%), respectively. None of any Salmonella species, C. jejuni, V. parahaemolyticus, or Shigella species was detected in this study. The results of PCR testing were confirmed using a typical viable count method employing a selective medium. We suggest that the multiplex polymerase chain reaction (mPCR) assay is a rapid and reliable method for detection of pathogenic bacteria contaminating eggs.

Characterization of exopolysaccharide-producing lactic acid bacteria from Taiwanese ropy fermented milk and their application in low-fat fermented milk

  • Ng, Ker-Sin;Chang, Yu-Chun;Chen, Yen-Po;Lo, Ya-Hsuan;Wang, Sheng-Yao;Chen, Ming-Ju
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.281-289
    • /
    • 2022
  • Objective: The aim of this study was to characterize the exopolysaccharides (EPS)-producing lactic acid bacteria from Taiwanese ropy fermented milk (TRFM) for developing a clean label low-fat fermented milk. Methods: Potential isolates from TRFM were selected based on the Gram staining test and observation of turbid suspension in the culture broth. Random amplified polymorphic DNA-polymerase chain reaction, 16S rRNA gene sequencing, and API CHL 50 test were used for strain identification. After evaluation of EPS concentration, target strains were introduced to low-fat milk fermentation for 24 h. Fermentation characters were checked: pH value, acidity, viable count, syneresis, and viscosity. Sensory evaluation of fermented products was carried out by 30 volunteers, while the storage test was performed for 21 days at 4℃. Results: Two EPS-producing strains (APL15 and APL16) were isolated from TRFM and identified as Lactococcus (Lc.) lactis subsp. cremoris. Their EPS concentrations in glucose and lactose media were higher than other published strains of Lc. lactis subsp. cremoris. Low-fat fermented milk separately prepared with APL15 and APL16 reached pH 4.3 and acidity 0.8% with a viable count of 9 log colony-forming units/mL. The physical properties of both products were superior to the control yogurt, showing significant improvements in syneresis and viscosity (p<0.05). Our low-fat products had appropriate sensory scores in appearance and texture according to sensory evaluation. Although decreasing viable cells of strains during the 21-day storage test, low-fat fermented milk made by APL15 exhibited stable physicochemical properties, including pH value, acidity, syneresis and sufficient viable cells throughout the storage period. Conclusion: This study demonstrated that Lc. lactis subsp. cremoris APL15 isolated from TRFM had good fermentation abilities to produce low-fat fermented milk. These data indicate that EPS-producing lactic acid bacteria have great potential to act as natural food stabilizers for low-fat fermented milk.

Effects of Food Polysaccharides and Seaweed Calcium on the Physicochemical Properties of Prickly Pear Extract Fermented by Lactobacillus rhamnosus LS

  • Son, Min-Jeong;Kwon, Oh-Sik;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.206-212
    • /
    • 2004
  • Prickly pear extract (PPE) was fermented by Lactobacillus rhamnosus LS at 3$0^{\circ}C$ for 2 days. To improve the physicochemical properties of fermented PPE, it was fortified with food polysaccharides (0.2 %) or seaweed calcium before lactic acid fermentation. The viable cell counts, flow behavior, titratable acidity and color stability of fermented PPE were evaluated during 4 weeks of cold storage. Addition of xanthan gum or glucomannan increased the apparent viscosity and acid production, viable cell counts and red color of PPE were also well maintained during the cold storage. However, fermenting PPE with gellan gum resulted in a decrease in relative absorbance, indicating lower color stability. In particular, PPE fortified with carrageenan or alginic acid showed reduced acid production and lower viable cell counts. Addition of seaweed calcium at a 0.1 % level had positive effects on color stability, and helped maintain viable cell counts of 4.1 ${\times}$ 10$^{9}$ CFU/mL. This study demonstrated that xanthan gum could be used as a good thickening agent and stabilizer for retaining viable cell counts and red color during the cold storage in PPE fermented by lactic acid bacteria.

Risk Analysis and Safety Assessment of Microbiological and Chemical Hazards in Katsuobushi Products Distributed in the Market (시중에서 유통되는 가쓰오부시의 미생물학적·화학적 위해요소분석 및 안전성 평가)

  • Song, Min Gyu;Kim, So Hee;Kim, Jin Soo;Lee, Jung Suck;Heu, Min Soo;Park, Shin Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.4
    • /
    • pp.431-436
    • /
    • 2022
  • For the safety assessment of microbiological and chemical hazards in katsuobushi, fifteen samples of katsuobushi were purchased from supermarkets. The contamination levels of total viable bacteria, coliforms, Escherichia coli, and nine pathogenic bacteria [Staphylococcus aureus, Salmonella spp., Listeria monocytogenes, Bacillus cereus, Vibrio parahaemolyticus, Clostridium perfringens, Enterohemorrhagic E. coli (EHEC), Yersinia enterocolitica and Campylobacter jejuni/coli] were quantitatively or qualitatively assessed. Additionally, the heavy metals (total and methyl mercury) content, radioactivity (131 I, 134 Cs+ and 137 Cs) were quantitatively assessed. Microbial and chemical analyses were performed using standard methods in Korean food code. The contamination level of total viable bacteria was 2.70 (1.18-4.42) log CFU/g. Coliforms, E. coli and S. aureus were not detected in any samples. Other eight pathogenic bacteria were negative in all samples. The contamination levels of total and methyl mercury were 0.366 (0.227-0.481) and 0.120 (0.002-0.241) mg/kg, respectively. In addition, radioactivity was not detected in any samples. The results will be helpful in revitalizing domestic use and boosting exports of katsuobushi because the microbiological and chemical safety of katsuobushi has been assured. Furthermore, the results may be used as a basis for performing chemical and microbial risk assessments of katsuobushi.

Development of Reverse Transcriptase-Polymerase Chain Reaction of fimA Gene to Detect Viable Salmonella in Milk (우유 내 활력있는 Salmonella를 검출하기 위한 fimA 유전자의 역전사중합효소 연쇄반응의 개발)

  • Choi, S.H.;Lee, S.B.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.841-848
    • /
    • 2004
  • Rapid detection of viable Salmonella in pasteurized milk is important to protect public health from food poisoning. Reverse transcriptase-polymerase chain reaction(RT-PCR) is recognized as a molecular genetical method to differentiate between live and dead bacteria The RT-PCR in this study was designed to detect specifically viable Salmonella in milk by using the primers whose nucleotide sequences were determined based on fimA gene which encodes the submit of type 1 fimbriae. Treatment of RNA preparation with RNase-free DNase was adequate enough to destroy DNA, which may otherwise be amplified in the RT PCR Seven strains of Salmonella were detected in the RT-PCR but Escherichia coli, Shigella sonnei, Citrobacter freundii, and Klebsiella pneumoniae were not. $10^7/ml$ and $10^6/ml$ of dead Salmonella which were heat-treated in milk were detectable by using the RT-PCR but $10^5{\sim}10/ml$ of the dead bacteria were not. The sensitivity of the RT-PCR in detecting viable Salmonella was 100 cells/ml.

Potential Probiotic Properties of Lactic Acid Bacteria Isolated from Kimchi

  • Kim, Seon-Jae
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.547-550
    • /
    • 2005
  • Fourteen out of 87 strains of lactic acid bacteria isolated tram Kimchi were found to be resistant against the action of artificial gastric and bile juices. In particular, lactobacilli KM 3, 7, 28, and 37 showed strong resistance and their viable cell counts at the initial stage remained the same even after 3 hours of cultivation in an artificial gastric juice. However, the survival rates of KM 14, 28, and 64 were found to be significantly enhanced in artificial bile juice. Based on the paper disc method, it was evident that isolated lactic acid bacteria showed antibacterial effect against Listeria monocytogenes, Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Vibrio vulnificus, and Salmonella typhimurium. The isolated lactic acid bacteria were identified as Lactobacillus plantarum and Leuconostoc mesenteroides.