Comparison of Phylogenetic Characteristics of Viable but Non-Culturable (VBNC) Bacterial Populations in the Pine and Quercus Forest Soil by 16S rDNA-ARDRA

16S rDNA-ARDRA법을 이용한 소나무림과 상수리나무림 토양 내 VBNC 세균군집의 계통학적 특성 비교

  • Han Song-Ih (Department of Biotechnology and Institute of Microbial Ecology Resources, Mokwon University) ;
  • Kim Youn-Ji (Department of Biotechnology and Institute of Microbial Ecology Resources, Mokwon University) ;
  • Whang Kyung-Sook (Department of Biotechnology and Institute of Microbial Ecology Resources, Mokwon University)
  • 한송이 (목원대학교 생명산업학부, 미생물생태자원연구소) ;
  • 김윤지 (목원대학교 생명산업학부, 미생물생태자원연구소) ;
  • 황경숙 (목원대학교 생명산업학부, 미생물생태자원연구소)
  • Published : 2006.06.01

Abstract

In this study was performed to analyze quantitatively the number of viable but non-culturable bacteria in the Pine and Quercus forest soil by improved direct viable count (DVC) and plate count (PC) methods. The number of living bacteria of Pine and Quercus forest soil by PC method were less then 1% of DVC method. This result showed that viable but non-culturable (VBNC) bacteria existed in the forest soil with high percentage. Diversity and structure of VBNC bacterial populations in forest soil were analyzed by direct extracting of DNA and 16S rDNA-ARDRA from Pine and Quercus forest soil. Each of them obtained 111 clones and 108 clones from Pine and Quercus forest soil. Thirty different RFLP types were detected from Pine forest soil and twenty-six different RFLP types were detected from Quercus forest soil by HeaIII. From ARDRA groups, dominant clones were selected for determining their phylogenetic characteristics based on 16S rDNA sequence. Based on the 16S rDNA sequences, dominant clones from ARDRA groups of Pine forest soil were classified into 7 major phylogenetic groups ${\alpha}$-proteobacteria (12 clones), ${\gamma}$-proteobacteria (3 clones), ${\delta}$-proteobacteria (1 clone), Flexibacter/Cytophaga (1 clone), Actinobacteria (4 clones), Acidobacteria (4 clones), Planctomycetes (5 clones). Also, dominant clones from ARDRA groups of Quercus forest soil were classified into 6 major phylogenetic groups : ${\alpha}$-proteobacte,ia (4clones), ${\gamma}$-proteobacteria (2 clones), Actinobacteria (10 clones), Acidobacteria (8 clones), Planctomycetes (1 clone), and Verrucomicobia (1 clone). Result of phylogeneric analysis of microbial community from Pine and Quercus forest soils were mostly confirmed at uncultured or unidentified bacteria, VBNC bacteria of over 99% existent in forest soil were confirmed variable composition of unknown micro-organism.

직접 생균수 측정법(DVC)과 평판계수법(PC)을 이용하여 소나무림과 상수리나무림 토양에 분포하는 세균군집의 정량적 평가를 실시한 결과, DVC법에 의해 계수된 생균수에 대해 평판법에 의해 계수된 생균수 1% 미만으로 나타났다. 이상의 결과로부터 산림토양 내에 평판배양법으로는 배양이 곤란한 난배양성(viable but non culturable; VBNC) 세균이 99% 이상 존재해 있는 것으로 판단되었다. 이들 VBNC 세균의 군집구조 해석을 위하여 토양으로부터 직접 DNA를 추출하고 16S rDNA-ARDRA 분석을 통하여 계통학적 특성을 검토하였다. 소나무림과 삼수리나무림 토양으로부터 각각 111 clones, 108 clones을 획득하고 HaeIII 절편양상에 따라 30 groups과 26 groups의 ARDRA group으로 분류하였다. 각 ARDRA group으로부터 대표 clone을 선발하여 16S rDNA 염기서 열을 결정한 결과, 소나무림 토양의 경우 ${\alpha}$-proteobacteria (12 clones), ${\gamma}$-proteobacteria (3 clones), ${\delta}$-proteobncteria (1clone), Flexibacter/Cytophaga (1 clone), Actinobacteria (4 clones), Acidobacteria (4 clones), 그리고 Planctomycetes (5 clone)의 7개의 계통군이 확인되었으며, 상수리나무림 토양에서는 ${\alpha}$-proteobacteria (4 clones), ${\gamma}$-proteobacteria (2 clones), Actinobacteria (10 clones), Acidobacteria (8 clones), Planctomycetes (1 clone), 그리고 Verrucomicrobia (1clone)로 6개의 다양한 계통군이 확인되었다. 이상, 소나무림과 상수리나무림 토양 내에 존재하는 99% 이상의 VBNC 세균군집의 대부분은 미배양성 혹은 미동정균으로 계통학적으로 다양한 미지의 미생물로 구성되어 있음이 확인되었다.

Keywords

References

  1. 박진숙, 황경숙, 천종식. 2005. 미생물의 분류 동정 실험법. 월드사이언스
  2. 유영한, 남궁정, 이윤영, 김정희, 이종영, 문병태. 2000. 광릉 시험림 내의 낙엽의 분해와 분해과정에 따른 영양 염류의 변화. 한국임학회지. 89, 41-48
  3. 황경숙, 양희찬, Takashi Someya. 2003. 변형된 DVC법 을 이용한 난배양성 토양세균 검출 및 정량적 평가. 한국미생물학회지. 39, 181-186
  4. 황경숙, 유승헌. 1995. 유기영양분 농도에 따른 토양세균의 증식양상과 통상 및 편성 저영양세균의 분리. 한국미생물학회지 21, 319-324
  5. 新.土の微生物(1) 日本土壤微生物硏究編. 博友社(日本,東京). 129-154
  6. Alexander, M. 1985. Introduction to soil microbiology. John Wiley & Sons, New york
  7. Berg, B. and G. Agren. 1984. Decomposition of needle litter and its organic chemical component: theory and field experiments. Longterm decomposition in a Scots pine forest III. Can. J. Bot. 62, 2880-2888 https://doi.org/10.1139/b84-384
  8. Bloomfield, S., G. Stewart., C. Dodd., R. Booth., and E. Power. 1998. The viable but nonculturable phenomenon explained. J. Microbiol. 144, 1-3 https://doi.org/10.1099/00221287-144-1-1
  9. Chandler, D. P., R. W. Schreckhise, J. L. Smith, and H. Bolton Jr. 1997. Electroelution to remove humic acids from soil DNA and RNA extracts. J. Microbiol. 61, 273-278
  10. Colwell, R. R., P. R. Brayton, D. J. Grimes, D. B. Rozak, S. A. Huq, and L. M. Plamer. 1985. Viable but non-culturable Vibrio cholera and related pathogens on the environment: Implications for release of genetically engineered microorganisms. Biotechnol. 3, 817-820 https://doi.org/10.1038/nbt0985-817
  11. Curtis, T. P., W. T. Sloan, and J. C. Scannell. 2002. Estimation prokaryotic diversity and its limis. Proc. Natl. Acad. Sci. USA 99, 10494-10499
  12. Holms, E. and V. Jensen. 1972. Aerobic chemoorganotrophic bacteria of a Dnaish beech forest. Oikos, 23, 248-260 https://doi.org/10.2307/3543413
  13. Insam, H. and K. Haselwandter. 1989. Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79, 174- 178 https://doi.org/10.1007/BF00388474
  14. Johnson, J. L. 1994. Similarity analysis of rRNAs, In Gerhardt, P., R.G.E. Murray, W. A. Wood, N. R. Krirg (ed.), Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC. 683-700
  15. Kim, J. G. and N. K. Chang. 1989. Litter production and decomposition in the pinus rigida plantation in Mt. Kwan-ak. Korean J. Ecol. 12, 9-20
  16. Kim, J. H. and H. W. Lee. 1989. Growth of soil microorganism for the leachates from leaf litter. Korean J. Ecol. 12, 67-74
  17. Kogure, K., U. Simidu, and N. Taga. 1984. An improved direct viable count method for aquatic bacteria. Arch. Hydrobiol. 102, 117-122
  18. Kogure, K., U. Simidu, N. Taga, and R. R. Colwoll. 1987. Correlation of direction of direct viable counts with heterotrophic activity for marine bacteria. Appl. Environ. Microbial. 53, 2332-2337
  19. Lane, D. J. 1991. 16S/23S rRNA sequencing, In Stackebrandt, E., M. Good fellow (ed.), Nucleic acid techniques in bacterial systematics, John Wiley and Sons, Chichester. pp. 115-175
  20. Mun, H. T. and H. T. Joo. 1994. Litter production and decomposition in the Quercus acutissima and pinus rigida forest soil. Korean J. Ecol. 17, 345-353
  21. Mun, H. T. and J. H. Kim. 1992. Litterfall decomposition, and nutrient dynamics of litter in red pine (pinus densiflora) and Chinese thuja (Thuja orientalis) stands in the lime stone area, Korean J. Ecol. 15, 147-155
  22. Park, B. K. and M. R. Kim. 1985. The decomposition rate of litter and soil microorganisms in slope directions. Korean J. Ecol. 8, 31- 37
  23. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  24. Thomson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W; improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  25. Torsvik, V., J. Gosksoyr, and F. L. Daae. 1990 High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56, 782-787
  26. Tsai, Y. L. and B. H. Olson. 1991. Rapid method for direct extraction of dna from soil and sediments. Appl. Environ. Mocrobiol. 57, 1070-1074
  27. Vaneechoutte M., R. Rossau, P. De Vos, M. Gillis, D. Janssens, N. Paepe, A. De Rouck, T. Fiers, G. Claeys, and K. Kersters. 1992. Rapid identification of bacteria of the Comamamonadaceae with amplified ribosomal DNA restriction analysis(ARDRA). FEMS Microbiol. Lett. 93, 227-234 https://doi.org/10.1111/j.1574-6968.1992.tb05102.x