• Title/Summary/Keyword: vertical stress

Search Result 1,174, Processing Time 0.022 seconds

A Study on Optimal Design for Vertical Roller Mill using DOE and Neural Network (실험계획법과 신경망을 이용한 수직형 롤러 분쇄기의 최적설계에 관한 연구)

  • Lee, Dong-Woo;Lee, Soo-Jin;Hong, Soon-Hyeok;Cho, Seok-Swoo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1130-1135
    • /
    • 2004
  • The vertical roller mill is the important machine grinding and mixing various crude materials in the manufacturing process of portland cement. Vertical roller mill is subjected to the cyclic bending stress by rollers load. It demands $4{\times}10^7$ cycle but has $4{\times}10^6{\sim}8{\times}10^6$ cycle. It fractures at the edge of grinding path of outside roller. The repair expense for it amounts to 30% of total maintenance. Therefore, this study shows optimal design for vertical roller mill using DOE and neural network.

  • PDF

Stress-Strain Behaviour of Overconsolidated Clay with Loading Rate (하중재하속도에 따른 과압밀점토의 응력-변형 거동)

  • 김병일;신현영;이승원;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.239-244
    • /
    • 2001
  • Natural clayey soils or improved grounds are in a overconsolidated conditions due to changes in vertical stress and pore pressures, desiccation, ageing and so on. These grounds show inelastic stress-strain behaviour characteristics within all range of strain except very small strain (${\gamma}$$\_$s/$\leq$10 ̄$^3$∼10 ̄$^4$%) when construction, such as excavations and retaining walls, is performed. Also it strongly depends on loading rate of current stress path and recent stress path. This study carried out drained stress path tests by varying loading rate of current and recent stress path. Test results indicated that stress-strain behaviour of overconsolidated clay depends on loading rate, especially loading rate of current stress path.

  • PDF

Prediction of Residual Stress Distribution in Multi-Stacked Thin Film by Curvature Measurement and Iterative FEA

  • Choi Hyeon Chang;Park Jun Hyub
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1065-1071
    • /
    • 2005
  • In this study, residual stress distribution in multi-stacked film by MEMS (Micro-Electro Mechanical System) process is predicted using Finite Element method (FEM). We evelop a finite element program for residual stress analysis (RESA) in multi-stacked film. The RESA predicts the distribution of residual stress field in multi-stacked film. Curvatures of multi­stacked film and single layers which consist of the multi-stacked film are used as the input to the RESA. To measure those curvatures is easier than to measure a distribution of residual stress. To verify the RESA, mean stresses and stress gradients of single and multi layers are measured. The mean stresses are calculated from curvatures of deposited wafer by using Stoney's equation. The stress gradients are calculated from the vertical deflection at the end of cantilever beam. To measure the mean stress of each layer in multi-stacked film, we measure the curvature of wafer with the left film after etching layer by layer in multi-stacked film.

Consolidation Characteristics at the Constant Rate of Strain(CRS) Test (일정변형률(CRS) 시험에서의 압밀특성)

  • Lee, Dal-Won;Kim, Si-Jung
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.491-499
    • /
    • 2010
  • This study was carried out to investigate the consolidation characteristics of the remolded clay by the oedometer and the constant rate of strain(CRS) consolidation tests. As the rate of strain increases, the settlement rapidly decreased. As the ratio of the sand in the specimen increases, its effect on the rate of strain to the settlement was reduced. As the effective stress increased, the void ratio decreased, while the rate of strain increased, it did not show a clear variation. The reduction of the void ratio was shown to be less than the oedometer test. The coefficient of vertical consolidation with effective stress showed very large variation around preconsolidation stress, but the rate of strain did not provide significant effects. The rate of strain with effective stress gradually decreased at all tests and mixed ratio of sand. The rate of strain at the constant rate of strain tests showed smaller than in the oedometer test. The coefficient of consolidation at the constant rate of strain tests showed much more increase than in the oedometer test. The ratio of the vertical coefficient of consolidation by the odometer and the constant rate of strain tests showed a large difference according to various tests method and mixing ratio. Therefore, it is recommended that careful attention should be paid to designing the soft ground improvement.

A PHOTOELASTIC STUDY OF THE STRESS DISTRIBUTION IN BONE BY THE TRANSPALATAL LINGUAL ARCH (TRANSPALATAL LINGUAL ARCH에 의한 골내 응력 분포에 관한 광탄성적 연구)

  • Ko, Ki-Young;Tae, Ki-Chul;Kook, Yoon-Ah;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.711-721
    • /
    • 1997
  • The purpose of this study was to investigate the stress distribution and intensity derived from the transpalatal lingual arch in the investing bone composed of photoelastic material(PL-3). The transpalatal lingual arch wire was deflected in the horizontal and vertical direction to give the various conditions. The two-dimensional photoelastic stress analysis was performed, and the stress distrebution was recored by photography The results were as follows: 1. In bilateral expansion, as horizontal deflection was singly applied, the stress was more concentrated on the root apex in square free end than round. In square free end, as vertical deflection was increased gradually, the black line meaning center of rotation moved inferiorly together with the increment of whole fringes. 2. In application of vertical deflection on anchorage side for unilateral expansion, the stress distribution that expansive force leaned to expansion side was observed. As vortical deflection increased, the extruding stress was observed on molar of expansion side. And as horizontal deflection increased, the tipping stress on the molar of anchorage side was observed. 3. In unilateral rotation with the asymmetric toe-in, the fringe appeared on the distal aspect of root apex.

  • PDF

THE STRESS ANALYSIS OF SUPPORTING TISSUE AND IMPLANT ACCORDING TO CROWN RESTORATIVE MATERIALS AND TYPE OF IMPLANT (수복재료와 임플랜트 종류에 따른 임플랜트 및 지지조직의 응력분포)

  • Choi Chang-Hwan;Oh Jong-Suk;Vang Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.1
    • /
    • pp.53-67
    • /
    • 2002
  • This study was aimed to analyze the stress distribution of implant and supporting tissue in single tooth implant restoration using Branemark $system^{(R)}$(Nobel Biocare, Gothenberg, Sweden) and Bicon system(Bicon Dental Implants, Boston, MA). Two dimensional finite element analysis model was made at mandibular first premolar area As a crown materials porcelain, ceromer, ADA type III gold alloy were used. Tests have been performed at 25Kgf vertical load on central fossa of crown portion and at 10Kgf load with $45^{\circ}$ lateral direction on cusp inclination. The displacement and stresses of implant and supporting structures were analyzed to investigate the influence of the crown material and the type of implant systems by finite element analysis. The results were obtained as follows : 1. The type of crown material influenced the stress distribution of superstructure, but did not influence that of the supporting alveolar bone. 2. The stress distribution of ceromer and type III gold alloy and porcelain is similar. 3. Stress under lateral load was about twice higher than that of vertical load in all occlusal restorative materials. 4. In Bicon system, stress concentration is similar in supporting bone area but CerOne system generated about 1.5times eater stress more in superstructure material. 5. In Branemark models, if severe occlusal overload is loaded in superstvucture. gold screw or abutment will be fractured or loosened to buffer the occlusal overload but in Bicon models such buffering effect is not expected, so in Bicon model, load can be concentrated in alveolar bone area.

Finite Element Approach to Investigate the Influence of the Jaw Bone Dimension on the Stress Around the Root Analogue Dental Implant (악골폭경이 치근형 임플란트 인접골에서의 응력에 미치는 영향에 대한 유한요소해석적 연구)

  • Jang, Ji-Man;Lee, Kyu-bok;Lee, Cheong-Hee;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.37-53
    • /
    • 2006
  • Purpose: The purpose of this study was to investigate the influences of the jaw dimension on the bone stress. Materials and Methods: Root analogue implant of Frialit-2 Synchro model in the jaw bone of various thickness from 8mm to 13mm were modelled axisymmetrically for a series of finite element analyses. As load conditions, non-axisymmetric lateral load of 20N and an oblique load of 50N, as well as an axisymmetric vertical load of 50N were taken into consideration. Results: The cervical area of implant under the axisymmetric load and the base cortical bone under the non axisymmetric load condition were the areas of main concern where the higher level of stress were likely to be obtained. Conclusion: The results indicated that at the two concerned areas drastically different stress distribution could take place as a function of the load conditions. Under the vertical load, the lower level of stress was observed for the narrow jaw bone at the cervical cortical bone whereas stress at the base cortical bone remained virtually unchanged. Under the non axisymmetric load condition, however, the stress at the base cortical bone increased very rapidly as the jaw bone width increased without inducing any significant change in the stress level at the cervical area.

Centrifugal Model Test on Stress Concentration Behaviors of Composition Ground under Flexible/Stiff Surcharge Loadings (연/강성 하중을 받는 복합지반의 응력분담거동에 대한 원심모형시험)

  • Song, MyungGeun;Bae, WooSeok;Ahn, SangRo;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.5-15
    • /
    • 2011
  • In this study, centrifuge model tests were performed to investigate stress concentration ratio, stress characteristics of soft clay ground improved by granular compaction piles with changes of piles type, loading condition and area replacement ratio. From the results of rigid loading tests, while vertical stresses acting on clay ground is similar, vertical stresses acting on GCP is larger than those acting on SCP with same replacement ratio. Also, average stress concentration ratio is increased proportionally with increasing the area replacement ratio of GCP and SCP. It was evaluated that average stress concentration ratio of soft clay ground improved by GCP is larger than that of SCP. As a result of flexible loading tests, stress concentration ratio is the highest when replacement ratio of GCP and SCP is 40%. Average stress concentration ratio of soft clay ground improved by GCP is a little more higher than is improved by SCP.

STRESS ANALYSIS OF SUPPORTING TISSUES ACCORDING TO IMPLANT FIXTURE DIAMETER AND RESIDUAL ALVEOLAR BONE WIDTH (치조골 폭경과 임플랜트 고정체의 직경에 따른 지지조직의 응력분포)

  • Han, Sang-Un;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.506-521
    • /
    • 2007
  • Statement of problem: The cumulative success rate of wide implant is still controversial. Some previous reports have shown high success rate, and some other reports shown high failure rate. Purpose: The aim of this study was to analyze, and compare the biomechanics in wide implant system embeded in different width of crestal bone under different occlusal forces by finite element approach. Material and methods: Three-dimensional finite element models were created based on tracing of CT image of second premolar section of mandible with one implant embedded. One standard model (6mm-crestal bone width, 4.0mm implant diameter central position) was created. Varied crestal dimension(4, 6, 8 mm), different diameter of implants(3.3, 4.0, 5.5, 6.0mm), and buccal position implant models were generated. A 100-N vertical(L1) and 30 degree oblique load from lingual(L2) and buccal(L3) direction were applied to the occlusal surface of the crown. The analysis was performed for each load by means of the ANSYS V.9.0 program. Conclusion: 1. In all cases, maximum equivalent stress that applied $30^{\circ}$ oblique load around the alveolar bone crest was larger than that of the vertical load. Especially the equivalent stress that loaded obliquely in buccal side was larger. 2. In study of implant fixture diameter, stress around alveolar bone was decreased with the increase of implant diameter. In the vertical load, as the diameter of implant increased the equivalent stress decreased, but equivalent stress increased in case of the wide implant that have a little cortical bone in the buccal side. In the lateral oblique loading condition, the diameter of implant increased the equivalent stress decreased, but in the buccal oblique load, there was not significant difference between the 5.5mm and 6.0mm as the wide diameter implant. 3. In study of alveolar bone width, equivalent stress was decreased with the increase of alveolar bone width. In the vertical and oblique loading condition, the width of alveolar bone increased 6.0mm the equivalent stress decreased. But in the oblique loading condition, there was not a difference equivalent stress at more than 6.0mm of alveolar bone width. 4. In study of insertion position of implant fixture, even though the insertion position of implant fixture move there was not a difference equivalent stress, but in the case of little cortical bone in the buccal side, value of the equivalent stress was most unfavorable. 5. In all cases, it showed high stress around the top of fixture that contact cortical bone, but there was not a portion on the bottom of fixture that concentrate highly stress and play the role of stress dispersion. These results demonstrated that obtaining the more contact from the bucco-lingual cortical bone by installing wide diameter implant plays an important role in biomechanics.

A Study on the Estimation of the Fatigue Life Using the Stress Generated Models in the Steel Railroad Bridges (강철도교의 응력발생모형을 이용한 피로수명 추정에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Lee, Seong Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.19-29
    • /
    • 1996
  • In this paper, it is presumed that the stress time history was generated by simulation method and investigated compatibility in regard to the reappearance of stress time history. In this procedure, the identified frequency distribution of stress range of the steel railroad bridge varies with the rational values of cut off point and bar width. Thus, we show variable aspect of the equivalent stress range results from change of cut off point and bar width. In addition, we analyze the variable of RMC and RMS model due to the cut off point and bar width of the measured stress history which influencs the prediction of fatigue life in the steel railroad bridge. The simulated stress time history is carried out by the superposition method incorporating the vertical load with rotation moment obtained from the Hermition interpolation function, and compared with developing stress results from measured maxi mum stress. Through this study, we can estimate the remaining fatigue life from a safety point of view and comparative accuracy.

  • PDF