• 제목/요약/키워드: vertical shear

검색결과 931건 처리시간 0.027초

지반주기를 고려한 다층지반의 평균전단파속도 추정 방법 평가 (Evaluation of Average Shear-wave Velocity Estimation Methods of Multi-layered Strata Considering Site Period)

  • 김동관
    • 한국지진공학회논문집
    • /
    • 제23권3호
    • /
    • pp.191-199
    • /
    • 2019
  • To calculate proper seismic design load and seismic design category, the exact site class for construction site is required. At present, the average shear-wave velocity for multi-layer soil deposits is calculated by the sum of shear-wave velocities without considering of vertical relationship of the strata. In this study, the transfer function for the multi-layered soil deposits was reviewed on the basis of the wave propagation theory. Also, the transfer function was accurately verified by the finite element model and the eigenvalue analysis. Three methods for site period estimation were evaluated. The sum of shear-wave velocities underestimated the average shear-wave velocities of 526 strata with large deviations. The equation of Mexican code overestimated the average shear-wave velocities. The equation of Japanese code well estimated the average shear-wave velocities with small deviation.

Stud connection in composite structures: development with concrete age

  • Chengqian Wen;Guotao Yang
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.729-741
    • /
    • 2023
  • As the most popular shear connection in composite structures, mature concrete has been widely investigated by considering mechanical properties of stud connectors (SCs) embedded. To further enhance the fabrication efficiency of composite structures and solve the contradiction between construction progress and structural performance, it is required to analyze the shear performance of stud connections of composite structures with different concrete ages. 18 typical vertical push-out tests were carried out on stud shear connectors at concrete ages of 7 days, 14 days, and 28 days. Also, the effects of concrete age, stud spacing and stud diameter on the shear capacity, connection stiffness and failure mode of the connectors were studied. A new relationship expression of load-slip for SCs with various concrete ages was proposed. The existing design code for the SCs shear strength was evaluated according to the experimental data, and a more practical prediction equation for the shear capacity of SCs with different concrete ages was established. A great agreement was observed between the experimental and theoretical results, which can provide a reference for engineering practices.

양산지역 점토의 비배수 전단강도 특성 (Characteristics of Undrained Shear Strength of Yangsan Clay)

  • 김길수;임형덕;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 연약지반처리위원회 학술세미나
    • /
    • pp.71-78
    • /
    • 2000
  • SHANSEP method involves the consolidation to stresses in excess of the preconsolidation pressure in order to overcome sample disturbance effect. The concept of SHANSEP is based on an approach to laboratory test which attempts to reproduce the in-situ conditions more closely than is possible in routine tests and evaluates normalized strength parameters for the soil as a function of OCR. But SHANSEP method can be applied only to fairly uniform clay deposits, and is unsuitable for a random deposit. In this study, CK/sub o/U triaxial compression test and incremental loading consolidation test were performed for the application of SHANSEP method on Yangsan clay. During the K/sub o/-consolidation, triaxial specimens were consolidated to stress equal to two times the in-situ vertical effective stress. And for overconsolidated condition, the specimens were swelled to a known vertical effective stress in order to have the desired OCR. With the results of CK/sub o/U triaxial compression test using the block samples, the relationship between c/sub u//σ/sub vc/' and OCR on Yangsan clay was established. For evaluating the undrained shear strength of Yangsan clay with depth, CK/sub o/U triaxial compression test was performed using the piston samples taken from Yangsan site. And also undrained shear strength was analyzed from the in-situ test such as Cone Penetration Test(CPT), Dilatometer Test(DMT), and Field Vane Test(FVT) and was compared with that of CK/sub o/U triaxial compression test.

  • PDF

Lateral deformation capacity and stability of layer-bonded scrap tire rubber pad isolators under combined compressive and shear loading

  • Mishra, Huma Kanta;Igarashi, Akira
    • Structural Engineering and Mechanics
    • /
    • 제48권4호
    • /
    • pp.479-500
    • /
    • 2013
  • This paper presents the experimental as well as analytical study conducted on layer-bonded scrap tire rubber pad (STRP) isolators to develop low-cost seismic isolators applicable to structures in developing countries. The STRP specimen samples were produced by stacking the STRP layers one on top of another with the application of adhesive. In unbonded application, the STRP bearings were placed between the substructure and superstructure without fastening between the contact surfaces which allows roll-off of the contact supports. The vertical compression and horizontal shear tests were conducted with varying axial loads. These results were used to compute the different mechanical properties of the STRP isolators including vertical stiffness, horizontal effective stiffness, average horizontal stiffness and effective damping ratios. The load-displacement relationships of STRP isolators obtained by experimental and finite element analysis results were found to be in close agreement. The tested STRP samples show energy dissipation capacity considerably greater than the natural rubber bearings. The layer-bonded STRP isolators serve positive incremental force resisting capacity up to the shear strain level of 150%.

레일레이파.러브파의 동시활용과 CAP SASW 기법 적용에 의한 지반 전단강성 평가의 고품질화 (Enhancement of Subgrade Stiffness Profiling by Incorporating Rayleigh and Love Waves into the Common-Array-Profiling(CAP) SASW Technique)

  • 장대우;조성호;강태호;고학송
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.338-345
    • /
    • 2005
  • Recently, surface-wave methods have been widely used for site investigation due to economic advantage and improved reliability. Specially, the Spectral-Analysis-of-Surface-Wave (SASW) method has been used to evaluate soil properties in geotechnical engineering. In determination of subgrade stiffness by SASW measurements, only the vertical Rayleigh waves have been used. This study proposed a framework to determine shear-wave velocity profiles by using vertical and horizontal Rayleigh waves and Love wave all together. In addition, the Common-Array-Profiling(CAP) SASW method was employed, which subgrade stiffness of profile the local material under two fixed receivers. The procedure proposed in this study was verified by comparing the shear-wave velocity profiles with the shear-wave velocity profiles of downhole testing at two geotechnical sites.

  • PDF

철근콘크리트보의 스터럽 효과에 관한 실험적 연구 (An Experimental Study on the Stirrup Effectiveness in Reinforced Concrete Beams)

  • 이영재;이윤영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.205-215
    • /
    • 2005
  • 본 연구에서는 콘크리트 보의 전단거동에서 콘크리트 압축강도가 스터럽 유효성에 미치는 영향을 실험적으로 연구하였다. 전단파괴와 휨파괴가 동시에 일어나는 경계점은 대략 S=150mm부근으로 예상되며, 이때 전단철근비는 보통강도 콘크리트보에서는 $0.63{\rho}_{vmax}$ 이고, 고강도 콘크리트보에서는 $0.53{\rho}_{vmax}$로서 ACI 전단설계 산정식은 매우 안전측이라고 판단된다.

In-plane seismic performance of masonry wall retrofitted with prestressed steel-bar truss

  • Hwang, Seung-Hyeon;Kim, Sanghee;Yang, Keun-Hyeok
    • Earthquakes and Structures
    • /
    • 제19권6호
    • /
    • pp.459-469
    • /
    • 2020
  • An external prestressed steel-bar truss unit was developed as a new strengthening technology to enhance the seismic performance of an in-plane masonry wall structure while taking advantage of the benefits of a prestressed system. The presented method consists of six steel bars: two prestressed vertical bars to introduce a prestressing force on the masonry wall, two diagonal bars to resist shear deformation, and two horizontal bars to maintain the configuration. To evaluate the effects of this new technique, four full-scale specimens, including a control specimen, were tested under combined loadings that included constant-gravity axial loads and cyclic lateral loads. The experimental results were analyzed in terms of the shear strength, initial stiffness, dissipated energy, and strain history. The efficiency of the external prestressed steel-bar truss unit was validated. In particular, a retrofitted specimen with an axial load level of 0.024 exhibited a more stable post behavior and higher energy dissipation than a control specimen with an observed complete sliding failure. The four vertical bars of the adjacent retrofitting units created a virtual column, and their strain values did not change until they reached the peak shear strength. The shear capacity of the masonry wall structure with external prestressed steel-bar truss units could be predicted using the model suggested by Yang et al.

Experimental study on behavior of tri-directional prestressed composite bridge column under low cyclic loading

  • Yang Chen;Zhaowei Jiang;Yingjun Gan;Jun Ye;Yong Yang
    • Earthquakes and Structures
    • /
    • 제27권4호
    • /
    • pp.251-262
    • /
    • 2024
  • To improve the seismic behavior of composite column with high strength concrete-filled steel tubular in bridge engineering, four column specimens, including one specimen with vertical prestressing force and three specimens with tri-directional prestressing force, were conducted under low cyclic loading. Test parameters including axial compression ratio, degree of vertical prestressing and existence of prestressed steel strips were emphatically analyzed. Experimental results revealed that applying tri-directional prestressing force to column with high strength concrete-filled steel tubular produced more beneficial behavior in terms of ductility, energy-dissipation and self-centering capacity over that of specimens only with vertical prestress. Moreover, ultimate bearing capacity of composite column was improved with increase of degree of vertical prestress and external axial force, while ductility would be reduced. External axial force showed slight influence on the self-centering behavior. Finally, a calculation equation for predicting the shear capacity of the tri-directional prestressed composite column was proposed and the accuracy of the calculated results validated by experimental data.

에너지 소산형 감쇠기를 이용한 철근콘크리트 전단벽-골조 시스템의 진동제어 (Vibration Control of Shear Wall-Frame System using Energy Dissipation Devices)

  • 박지훈;김길환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.578-581
    • /
    • 2007
  • In this study, the seismic control performance of energy dissipation devices installed in a shear all-frame structure is investigated through nonlinear time history analysis of a 12-story building. Inelastic shear walls are modeled using the multiple vertical line element model (MVLEM) and inelastic columns and girders were modeled using fiber beam elements. For a seismic load increased by 38% compared to the design load, the seismic control performance was analyzed based on the results of a nonlinear time history analysis in terms of the inter-story drift, the story shear and the flexural strain. Friction type dampers was found to performs best if they are installed in the form of a brace adjacent to the shear wall with the friction force of 15 % of the maximum story shear force induced in the original building structure without dampers.

  • PDF

옹벽구조물용 복합재료의 전단거동 특성 (The Shear Behavior of Composite Material for Retaining Wall)

  • 오기대;김경열;김대홍
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1359-1364
    • /
    • 2008
  • In these days, the composite material is popular as a material of Retaining wall because of the advantages of economy and construction. In general, retaining wall is not estimated for the stability of structure, but some of retaining walls that are composed of composite materials became thin because of the highly dense materials. So the concern of shear failure for the structure is rising. Because standard test criterion and large scale tests equipment are rarely available, few studies are performed. So, in this study, we performed large scale direct shear tests for various confining stresses(147, 294, 441 kPa), and estimate shear behavior of composite material by the relation of shear stress - displacement and vertical - shear displacement.

  • PDF