DOI QR코드

DOI QR Code

Stud connection in composite structures: development with concrete age

  • Chengqian Wen (School of Civil Engineering, Qingdao University of Technology) ;
  • Guotao Yang (School of Civil Engineering, Qingdao University of Technology)
  • Received : 2022.03.05
  • Accepted : 2023.03.30
  • Published : 2023.06.25

Abstract

As the most popular shear connection in composite structures, mature concrete has been widely investigated by considering mechanical properties of stud connectors (SCs) embedded. To further enhance the fabrication efficiency of composite structures and solve the contradiction between construction progress and structural performance, it is required to analyze the shear performance of stud connections of composite structures with different concrete ages. 18 typical vertical push-out tests were carried out on stud shear connectors at concrete ages of 7 days, 14 days, and 28 days. Also, the effects of concrete age, stud spacing and stud diameter on the shear capacity, connection stiffness and failure mode of the connectors were studied. A new relationship expression of load-slip for SCs with various concrete ages was proposed. The existing design code for the SCs shear strength was evaluated according to the experimental data, and a more practical prediction equation for the shear capacity of SCs with different concrete ages was established. A great agreement was observed between the experimental and theoretical results, which can provide a reference for engineering practices.

Keywords

Acknowledgement

This rsearch is sponsored by State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, China (No. SLDRCE17-02), National Natural Science Foundation of China (Nos. 51808308 and 51978351), Department of Education of Shandong Province (No. 2019KJG012) and Department of Industry and Information Technology of Shandong Province (Nos. 202060101618 and 202060103805). This support is gratefully acknowledged.

References

  1. AASHTO-LRFD (2014), AASHTO-LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials, Washington, D.C., United States of America. 
  2. Ahn, J.H., Lee, C.G., Won, J.H. and Kim, S.H. (2010), "Shear resistance of the perfobond-rib shear connector depending on concrete strength and rib arrangement", J. Construct. Steel Res., 66(10), 1295-1307. https://doi.org/10.1016/j.jcsr.2010.04.008. 
  3. An, L. and Cederwall, K. (1996), "Push-out tests on studs in high strength and normal strength concrete", J. Construct. Steel Res., 36(1), 15-29. https://doi.org/10.1016/0143-974X(94)00036-H. 
  4. Baran, E. and Topkaya, C. (2012), "An experimental study on channel type shear connectors", J. Construct. Steel Res., 74,108-117. https://doi.org/10.1016/j.jcsr.2012.02.015. 
  5. Bezerra, L.M., Cavalcante, O.O., Chater, L. and Bonilla, J. (2018), "V-shaped shear connector for composite steel-concrete beam", J. Construct. Steel Res., 150, 162-174. https://doi.org/10.1016/j.jcsr.2018.07.016. 
  6. Buckby, J.S., Kwark, J., Joh, C., Yoo, S.W. and Lee, K.C. (2015), "Headed stud shear connector for thin ultrahigh-performance concrete bridge deck", J. Construct. Steel Res., 108, 23-30. https://doi.org/10.1016/j.jcsr.2015.02.001. 
  7. CEB-FIP Model Code (2010), Fib model code for concrete structures 2010, Ernst & Sohn; Berlin, Germany. 
  8. Eurocode 4 (2004), Design of composite steel and concrete structures. Part 1.1: General rules and rules for buildings, BSI Publications; London, UK. 
  9. Gardner, N.J. (1990), "Effect of temperature on the early-age properties of type I, type II, and type III/fly ash concretes with temperature", ACI Mater. J., 87(1), 68-78. https://doi.org/10.14359/2381. 
  10. Gattesco, N., Giuriani, E. and Gubana, A. (1997), "Low-cycle fatigue test on stud shear connectors", J. Struct. Eng., 123(2), 145-150. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:2(145). 
  11. GB50017 (2017), Standard for design of steel structures. GB50017-2017, China Building Industry Press; Beijing, China. 
  12. Grant, P. and Rousseau, C.Q. (2000), Composite Structures: Theory and Practice, ASTM International, West Conshohocken, PA, United States of America. 
  13. Guo, K. and Yang, G. (2020), "Load-slip curves of shear connection in composite structures: prediction based on ANNs", Steel Compos. Struct., 36(5), 493-506. https://doi.org/10.12989/scs.2020.36.5.493. 
  14. Hanswille, G., Porsch, M. and Ustundag, C. (2007a), "Resistance of headed studs subjected to fatigue loading: Part I: Experimental study", J. Construct. Steel Res., 63(4), 475-484. https://doi.org/10.1016/j.jcsr.2006.06.035. 
  15. Hanswille, G., Porsch, M. and Ustundag, C. (2007b), "Resistance of headed studs subjected to fatigue loading Part II: Analytical study", J. Construct. Steel Res., 63(4), 485-493. https://doi.org/10.1016/j.jcsr.2006.06.036. 
  16. Hassanieh, A., Valipour, H.R. and Bradford, M.A. (2018), "Bolt shear connectors in grout pockets: Finite element modelling and parametric study", Construct. Build. Mater., 176, 179-192. https://doi.org/10.1016/j.conbuildmat.2018.05.029. 
  17. He, Y.L., Guo, S.J., Wang, L.C., Yang, Y. and Xiang, Y.Q. (2020), "Experimental and numerical analysis of grouped stud shear connectors embedded in HFRC", Construct. Build. Mater., 242, 118197. https://doi.org/10.1016/j.conbuildmat.2020.118197. 
  18. Hu, X., Niu, D. and Zhang, Y. (2013), "Experimental research on bond performance of early-age fly ash concrete", J. Build. Struct., 34(4), 152-157. 
  19. Huo, J., Wang, H., Li, L. and Liu, Y. (2019), "Experimental study on impact behaviour of stud shear connectors in composite beams with profiled steel sheeting", J. Construct. Steel Res., 161, 436-449. https://doi.org/10.1016/j.jcsr.2018.04.029. 
  20. Huo, J., Wang, H., Zhu, Z., Liu, Y. and Zhong, Q. (2018), "Experimental study on impact behavior of stud shear connectors between concrete slab and steel beam", J. Struct. Eng., 144(2), 04017203. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001945. 
  21. Johnson, R.P. (2018). Composite Structures of Steel and Concrete: Beams, Slabs, Columns and Frames for Buildings, John Wiley & Sons, Hoboken, NJ, United States of America. 
  22. Johnson, R.P. and Buckby, R.J. (1975), Composite Structures of Steel and Concrete, Crosby Lockwood Staples, London, United Kingdom. 
  23. Khan, A.A., Cook, W.D. and Mitchell, D. (1995), "Early age compressive stress-strain properties of low-, medium, and highstrength concretes", ACI Mater. J., 92(6), 617-624. https://doi.org/10.14359/9781. 
  24. Kim, J.K., Han, S.H. and Song, Y.C. (2002), "Effect of temperature and aging on the mechanical properties of concrete: Part I. Experimental results", Cement Concrete Res., 32(7), 1087-1094. https://doi.org/10.1016/S0008-8846(02)00744-5. 
  25. Kim, K.S., Han, O., Gombosuren, M. and Kim, S.H. (2019), "Numerical simulation of Y-type perfobond rib shear connectors using finite element analysis", Steel Compos. Struct., 31(1), 53-67. https://doi.org/10.12989/scs.2019.31.1.053. 
  26. Kozma, A., Odenbreit, C., Braun, M.V., Veljkovic, M. and Nijgh, M.P. (2019), "Push-out tests on demountable shear connectors of steel-concrete composite structures", Struct., 21, 45-54. https://doi.org/10.1016/j.istruc.2019.05.011. 
  27. Lew, H.S. and Reichard, T.W. (1978), "Mechanical properties of concrete at early ages", ACI J. Proceedings, 75(10), 533-542. https://doi.org/10.14359/10966. 
  28. Lin, H., Lei, L. and Jian, L. (2021), "Numerical simulation of shear capacity of lightweight aggregate concrete stud connectors". E3S Web of Conf., 272, 02021. https://doi.org/10.1051/e3sconf/202127202021. 
  29. Lin, Z., Liu, Y. and He, J. (2014), "Behavior of stud connectors under combined shear and tension loads", Eng. Struct., 81, 362-376. https://doi.org/10.1016/j.engstruct.2014.10.016. 
  30. Lin, Z., Liu, Y. and Roeder, C.W. (2016), "Behavior of stud connections between concrete slabs and steel girders under transverse bending moment", Eng. Struct., 117, 130-144. https://doi.org/10.1016/j.engstruct.2016.03.014. 
  31. Ling, Y., Zheng, Z., Yang, T.Y. and Ma, H. (2019), "Behaviour and modeling of the bearing capacity of shear stud connectors", Int. J. Steel Struct., 19(2), 650-659. https://doi.org/10.1007/s13296-018-0154-3. 
  32. Lorenc, W. and Kubica, E. (2006), "Behavior of composite beams prestressed with external tendons: experimental study", J. Construct. Steel Res., 62(12), 1353-1366. https://doi.org/10.1016/j.jcsr.2006.01.007. 
  33. Mazoz, A., Benanane, A. and Titoum, M. (2013), "Push-out tests on a new shear connector of I-shape", Int. J. Steel Struct., 13(3), 519-528. https://doi.org/10.1007/s13296-013-3011-4. 
  34. Mirza, O. and Uy, B. (2009), "Behaviour of headed stud shear connectors for composite steel-concrete beams at elevated temperatures", J. Construct. Steel Res., 65(3), 662-674. https://doi.org/10.1016/j.jcsr.2008.03.008. 
  35. Mirza, O. and Uy, B. (2010), "Effects of the combination of axial and shear loading on the behaviour of headed stud steel anchors", Eng. Struct., 32(1), 93-105. https://doi.org/10.1016/j.engstruct.2009.08.019. 
  36. Oehlers, D.J. (1990), "Deterioration in strength of stud connectors in composite bridge beams", J. Struct. Eng., 116(12), 3417-3431. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:12(3417). 
  37. Oehlers, D.J. and Coughlan, C.G. (1986), "The shear stiffness of stud shear connections in composite beams", J. Construct. Steel Res., 6(4), 273-284. https://doi.org/10.1016/0143-974X(86)90008-8. 
  38. Ollgaard, J.G., Roger, R.G. and Fisher, J.W. (1971), "Shear strength of stud connectors in lightweight and normal-weight concrete", AISC Eng. J., 8(2), 79-92. 
  39. Oluokun, F.A., Burdette, E.G. and Deatheridge, J.H. (1990), "Early-age concrete strength prediction by maturity--another look", ACI Mater. J., 87(6), 565-572. https://doi.org/10.14359/2519. 
  40. Plowman, J.M. (1956), "Discussion: Maturity and the strength of concrete", Magazine Concrete Res., 8(24), 169-183.  https://doi.org/10.1680/macr.1956.8.24.169
  41. Qi, J., Wang, J., Li, M. and Chen, L. (2017), "Shear capacity of stud shear connectors with initial damage: Experiment, FEM model and theoretical formulation", Steel Compos. Struct., 25(1), 79-92. https://doi.org/10.12989/scs.2017.25.1.079. 
  42. Qin, X. and Yang, G. (2021), "Elastic stiffness of stud connection in composite structures", Steel Compos. Struct., 39(4), 419-433. https://doi.org/10.12989/scs.2021.39.4.419. 
  43. Rehman, N., Lam, D., Dai, X. and Ashour, A.F. (2016), "Experimental study on demountable shear connectors in composite slabs with profiled decking", J. Construct. Steel Res., 122, 178-189. https://doi.org/10.1016/j.jcsr.2016.03.021. 
  44. Saul, A.G.A. (1951), "Principles underlying the steam curing of concrete at atmospheric pressure", Magazine Concrete Res., 2(6), 127-140. https://doi.org/10.1680/macr.1951.2.6.127. 
  45. Shariati, M., Ramli Sulong, N.H., Shariati, A. and Kueh, A.B.H. (2016), "Comparative performance of channel and angle shear connectors in high strength concrete composites: An experimental study", Construct. Build. Mater., 120, 382-392. https://doi.org/10.1016/j.conbuildmat.2016.05.102. 
  46. Shariati, M., Ramli Sulong, N.H., Suhatril, M., Shariati, A., Arabnejad Khanouki, M.M. and Sinaei, H. (2013), "Comparison of behaviour between channel and angle shear connectors under monotonic and fully reversed cyclic loading", Construct. Build. Mater., 38, 582-593. https://doi.org/10.1016/j.conbuildmat.2012.07.050. 
  47. Shim, C.S., Lee, P.G. and Yoon, T.Y. (2004), "Static behavior of large stud shear connectors", Eng. Struct., 26(12), 1853-1860. https://doi.org/10.1016/j.engstruct.2004.07.011. 
  48. Slutter, R.G. and Fisher, J.W. (1966), "Fatigue Strength of Shear Connectors", Fritz Engineering Laboratory Report No. 316.2; Lehigh University Institute of Research. 
  49. Su, Q., Yang, G. and Bradford, M.A. (2015), "Behavior of a continuous composite box girder with a prefabricated prestressed-concrete slab in its hogging-moment region", J. Bridge Eng., 20(8), B4014004. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000698. 
  50. Su, Q.T., Wang, W., Luan, H.W. and Yang, G.T. (2014a), "Experimental research on bearing mechanism of perfobond rib shear connectors", J. Construct. Steel Res., 95, 22-31. https://doi.org/10.1016/j.jcsr.2013.11.020. 
  51. Su, Q.T., Yang, G.T. and Bradford, M.A. (2014b), "Static behaviour of multi-row stud shear connectors in high- strength concrete", Steel Compos. Struct., 17(6), 967-980. https://doi.org/10.12989/scs.2014.17.6.967. 
  52. Topkaya, C., Yura, J.A. and Williamson, E.B. (2004), "Composite shear stud strength at early concrete ages", J. Struct. Eng., 130(6), 952-960. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(952). 
  53. Viest, I.M. (1956), "Investigation of stud shear connectors for composite concrete and steel T-beams", ACI J. Proceedings, 52(4), 875-892. https://doi.org/10.14359/11655. 
  54. Wang, J., Qi, J., Tong, T., Xu, Q. and Xiu, H. (2019), "Static behavior of large stud shear connectors in steel-UHPC composite structures", Eng. Struct., 178, 534-542. https://doi.org/10.1016/j.engstruct.2018.07.058. 
  55. Wang, J.Y., Guo, J.Y., Jia, L.J., Chen, S.M. and Dong, Y. (2017), "Push-out tests of demountable headed stud shear connectors in steel-UHPC composite structures", Compos. Struct., 170, 69-79. https://doi.org/10.1016/j.compstruct.2017.03.004. 
  56. Wang, X., Zhu, B., Cui, S. and Lui, E.M. (2018), "Experimental research on PBL connectors considering the effects of concrete stress state and other connection parameters", J. Bridge Eng., 23(1), 04017125. https://doi.org/10.1061/%28ASCE%29BE.1943-5592.0001158. 
  57. Xu, X., He, D., Zeng, S., He, W., Tan, H. and Yu, Z. (2021), "Effect of concrete cracks on the corrosion of headed studs in steel and concrete composite structures", Construct. Build. Mater., 293, 123440. https://doi.org/10.1016/j.conbuildmat.2021.123440. 
  58. Xu, X., Zhou, X. and Liu, Y. (2020), "Behavior of rubber-sleeved stud shear connectors under fatigue loading", Construct. Build. Mater., 244, 118386. https://doi.org/10.1016/j.conbuildmat.2020.118386. 
  59. Xue, W.C., Ding, M., Wang, H. and Luo, Z.W. (2008), "Static behavior and theoretical model of stud shear connectors", J. Bridge Eng., 13(6), 623-634. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:6(623). 
  60. Yang, F., Liu, Y., Jiang, Z. and Xin, H. (2018), "Shear performance of a novel demountable steel-concrete bolted connector under static push-out tests", Eng. Struct., 160, 133-146. https://doi.org/10.1016/j.engstruct.2018.01.005. 
  61. Yang, Y. and Chen, Y. (2018), "Experimental study on mechanical behavior of PBL shear connectors", J. Bridge Eng., 23(9), 04018062. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001274. 
  62. Yu, Z., He, S., Mosallam, A.S., Jiang, S. and Feng, W. (2020), "Experimental and numerical evaluation of perfobond rib shear connectors embedded in recycled aggregate concrete", Adv. Civil Eng., 2020, 3157091. https://doi.org/10.1155/2020/3157091. 
  63. Yuan, Q., Yang, Z., Chai, J. and Wang, D. (2014), "Experimental study and FEA on mechanical behavior of H-steel reinforced concrete beams at early-age", J. Build. Struct., 35(3), 193-200. 
  64. Zhao, C., Li, Z., Deng, K. and Wang, W. (2018), "Experimental investigation on the bearing mechanism of perfobond rib shear connectors", Eng. Struct., 159, 172-184. https://doi.org/10.1016/j.engstruct.2017.12.047. 
  65. Zheng, S., Liu, Y., Yoda, T. and Lin, W. (2016), "Parametric study on shear capacity of circular-hole and long-hole perfobond shear connector", J. Construct. Steel Res., 117, 64-80. https://doi.org/10.1016/j.jcsr.2015.09.012.