• Title/Summary/Keyword: vertical bearing capacity

Search Result 226, Processing Time 0.023 seconds

Analytical study on cable shape and its lateral and vertical sags for earth-anchored suspension bridges with spatial cables

  • Gen-min Tian;Wen-ming Zhang;Jia-qi Chang;Zhao Liu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.255-272
    • /
    • 2023
  • Spatial cable systems can provide more transverse stiffness and torsional stiffness without sacrificing the vertical bearing capacity compared with conventional vertical cable systems, which is quite lucrative for long-span earth-anchored suspension bridges' development. Higher economy highlights the importance of refined form-finding analysis. Meanwhile, the internal connection between the lateral and vertical sags has not yet been specified. Given this, an analytic algorithm of form-finding for the earth-anchored suspension bridge with spatial cables is proposed in this paper. Through the geometric compatibility condition and mechanical equilibrium condition, the expressions for cable segment, the recurrence relationship between catenary parameters and control equations of spatial cable are established. Additionally, the nonlinear general reduced gradient method is introduced into fast and high-precision numerical analysis. Furthermore, the analytic expression of the lateral and vertical sags is deduced and discussed. This is very significant for the space design above the bridge deck and the optimization of the sag-to-span ratio in the preliminary design stage of the bridge. Finally, the proposed method is verified with the aid of two examples, one being an operational self-anchored suspension bridge (with spatial cables and a 260 m main span), and the other being an earth-anchored suspension bridge under design (with spatial cables and a 500 m main span). The necessity of an iterative calculation for hanger tensions on earth-anchored suspension bridges is confirmed. It is further concluded that the main cable and their connected hangers are in very close inclined planes.

Study on the Effectiveness of Preloading Method on Reinforcement of the Pile Foundation by 3D FEM Analysis (3차원 수치해석을 이용한 공동주택 수직증축용 기초 보강 선재하공법 효과 분석)

  • Wang, Cheng-Can;Han, Jin-Tae;Jang, Young-Eun;Ha, Ik-Soo;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.47-57
    • /
    • 2018
  • In recent years, vertical extension remodeling of apartment building is considered as one of the efficient ways to broaden and enhance the utilization of existing buildings due to the rapid development of population and decrement of land resources. The reinforcement of foundation is of great importance to bearing the additional load caused by the added floors. However, because of the additional load, the carried load by the existing piles would be in excess of its allowable bearing capacity. In this study, a conceptual construction method called preloading method was presented. The preloading method applies force onto the reinforcing pile before vertical extension construction. The purpose of preloading is to transfer partial load applied on the existing piles to reinforcing piles in order to keep each pile not exceeding the allowable capacity and to mobilize resistance of reinforcing pile by developing relative settlement. The feasibility and effect of preloading method was investigated by using finite numerical method. Two simulation models, foundation reinforcement with preloading and without preloading, were developed through PLAXIS 3D program. Numerical results showed that the presented preloading method is capable of sharing partial carried load of existing pile and develops the mobilization of reinforcing pile's frictional resistance.

A Study on the Durability Evaluation Criteria for the Vertical Extension Remodeling of Apartment (수직 중축형 리모델링 안전진단 내구성 평가기준 합리화에 관한 연구)

  • Yoon, Sang-Chun;Shin, Dong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.197-205
    • /
    • 2020
  • In 2014, The Housing Act amended to allows vertical extension and increases the units of housing (or total floor area) to site. Currently, the feasibility of performing vertical extension is evaluated based on safety diagnosis provisions and manuals with 1st investigation stage on slope, uneven settlement, load-bearing capacity, and durability. However, a need for more reasonable evaluation criteria for the investigation is still required because there had not been any other case study on the diagnosis for the vertical extension, and the engineering basis on evaluation criteria were not suggested. Accordingly, this study is intended to suggest feasible evaluation criteria on the carbonation, chloride ion contents, corrosion of reinforcements, crack and surface deterioration of concrete for durability assessment by codes and standards of domestic and foreign countries. The results of this study are expected to be beneficial for establishing more reasonable durability evaluation criteria, and in turn, more reliable assessment protocol for vertical extension.

Reliability analysis-based safety factor for stability of footings on frictional soils

  • Parviz Tafazzoli Moghaddam;Pezhman Fazeli Dehkordi;Mahmoud Ghazavi
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.543-552
    • /
    • 2023
  • The design of foundations based on a deterministic approach may not be safe and reliable occasionally, since soils sometimes show considerable spatial variability, and thus, significant uncertainties in turn affect the estimation of footing bearing capacity. The design of footing on cohesionless stratums on the basis of reliability analysis has not received much attention. This paper performs two-dimensional random finite difference analyses of shallow strip footings on a spatially variable frictional soil considering correlation structure. Friction angle (ϕ) is considered as a log-normally distributed random variable and Monte Carlo Simulation is then performed to determine the statistical response based on the random fields. A new approach reliability-based safety factor is defined based on various reliability levels by considering the coefficient of variation of ϕ and correlation length in both the horizontal and vertical directions. The comparison of the probabilistic safety factor and the conventional one illustrates the limitations of the deterministic safety factor and provides insight into how the heterogeneity of soils properties affects the required safety factor. Results show that the conventional safety factor of 3 can be conservative in some cases, especially for soil with low values of mean ϕ and COVϕ.

Numerical Analysis of Pile Foundation Considering the Thawing and Freezing Effects (융해-동결작용을 고려한 말뚝 기초에 관한 수치해석 연구)

  • Park, Woo-Jin ;Park, Dong-Su;Shin, Mun-Beom;Seo, Young-Kyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.51-63
    • /
    • 2023
  • Numerical analysis was conducted to determine the effect of soil behavior by thawing and freezing of seasonal frozen soil on pile foundations. The analysis was performed using the finite element method (FEM) to simulate soil-pile interaction based on the atmosphere temperature change. Thermomechanical coupled modeling using FEM was applied with the temperature-dependent nonlinear properties of the frozen soil. The analysis model cases were applied to the MCR and HDP models to simulate the elastoplastic behavior of soil. The numerical analysis results were analyzed and compared with various conditions having different length and width sizes of the pile. The results of the numerical analysis showed t hat t he HDP model was relat ively passive, and t he aspect and magnit ude of t he bearing capacit y and displacement of the pile head were similar depending on the length and width of the pile conditions. The vertical displacement of the pile head by thawing and freezing of the ground showed a large variation in displacement for shorter length conditions. In the MCR model, the vertical displacement appeared in the maximum thaw settlement and frost heaving of 0.0387 and 0.0277 m, respectively. In the HDP model, the vertical displacement appeared in the maximum thaw settlement and frost heaving of 0.0367 and 0.0264 m, respectively. The results of the pile bearing capacity for the two elastoplastic models showed a larger difference in the width condition than the length condition of the pile, with a maximum of about 14.7% for the width L condition, a maximum of about 5.4% for M condition, and a maximum of about 5.3% for S condition. The significance of the effect on the displacement of the pile head and the bearing capacity depended on the pile-soil contact area, and the difference depended on the presence or absence of an active layer in the soil and its thickness.

The Estimated Stiffness of Rubber Pads for Railway Bridges (철도교용 고무패드의 강성 추정기법)

  • Oh, Saeh Wan;Choi, Eun Soo;Jung, Hie Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.307-316
    • /
    • 2005
  • This study analyzed the characteristics of four kinds of bridge rubber pads and suggested a method of determining the stiffness and the damping ratio of the pads.The stiffness of rubber pads can be estimated by a direct static test and a dynamic test indirectly.This study used both methods to determine the pad's stiffness.The damping ratio of pads can be obtained using the dynamic test and the damping ratio of polyurethane rubber pads was estimated to aproximate that of natural and chloroprene rubber pads.The polyurethane rubber pads are harder than natural and chloroprene rubber pads and thus carry larger load bearing capacity.In addition, they showed higher stiffness with the same shape factor than the others and thus are more available for bridge bearings.Although natural and chloroprene rubber pads are elongated to large deformation in the horizontal direction due to vertical loads, polyurethane rubber pads almost do not generate horizontal deformation due to vertical loads regardless of the thickness and hardness of the pads.Therefore, they do not need reinforced plate to restrict horizontal deformation.

Mitigation of progressive collapse in steel structures using a new passive connection

  • Mirtaheri, Masoud;Emami, Fereshteh;Zoghi, Mohammad A.;Salkhordeh, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.381-394
    • /
    • 2019
  • If an alternative path would not be considered for redistribution of loads, local failure in structures will be followed by a progressive collapse. When a vertical load-bearing element of a steel structure fails, the beams connected to it will lose their support. Accordingly, an increase in span's length adds to the internal forces in beams. The mentioned increasing load in beams leads to amplifying the moments there, and likewise in their corresponding connections. Since it is not possible to reinforce all the elements of the structure against this phenomenon, it seems rational to use other technics like specified strengthened connections. In this study, a novel connection is suggested to handle the stated phenomenon which is introduced as a passive connection. This connection enables the structure to tolerate the added loads after failing of the vertical element. To that end, two experimental models were constructed and thereafter tested in half-scale, one-story, double-bay, and bolted connections in three-dimensional spaces. This experimental study has been conducted to compare the ductility and strength of a frame that has ordinary rigid connections with a frame containing a novel passive connection. At last, parametric studies have been implemented to optimize the dimensions of the passive connection. Results show that the load-bearing capacity of the frame increased up to 75 percent. Also, a significant decrease in the displacement of the node wherein the column is removed was observed compared to the ordinary moment resisting frame with the same loads.

Experimental investigation of effects of sand contamination on strain modulus of railway ballast

  • Kian, Ali R. Tolou;Zakeri, Jabbar A.;Sadeghi, Javad
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.563-570
    • /
    • 2018
  • Ballast layer has an important role in vertical stiffness and stability of railway track. In most of the Middle East countries and some of the Asian ones, significant parts of railway lines pass through desert areas where the track (particularly ballast layer) is contaminated with sands. Despite considerable number of derailments reported in the sand contaminated tracks, there is a lack of sufficient studies on the influences of sand contamination on the ballast vertical stiffness as the main indicator of track stability. Addressing this limitation, the effects of sand contamination on the mechanical behavior of ballast were experimentally investigated. For this purpose, laboratory tests (plate load test) on ballast samples with different levels of sand contamination were carried out. The results obtained were analyzed leading to derive mathematical expressions for the strain modulus ($E_V$) as a function of the ballast level of contamination. The $E_V$ was used as an index for evaluation of the load-deformation characteristics and bearing capacity of track substructure. The critical limit of sand contamination, after which the $E_V$ of the ballast reduces drastically, was obtained. It was shown that the obtained research results improve the current track maintenance approach by providing key guides for the optimization of ballast maintenance planning (the timing of ballast cleaning or renewal).

A Estimation Method of Settlement for Granular Compaction Pile (조립토 다짐말뚝의 침하량 산정기법)

  • Kim, Hong-Taek;Hwang, Jung-Soon;Park, Jun-Yong;Yoon, Chang-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.286-293
    • /
    • 2005
  • In soft ground the settlement criterion usually governs. Therefore, it is very important not only reasonable assessment of the allowable bearing capacity of the soil but also reasonable assessment of settlement. In the previous studies by many other researchers, load concentration ratio and settlement reduction factor are usually proposed for estimating the settlement of granular compaction piles. In the previous studies, the reinforced ground with granular compaction piles is simplified as composite ground and the analysis is performed with in the basis of this assumption. However, the lateral deformation of granular compaction pile could not be considered and only the relative vertical strength between pile and soils could be considered in the analysis. In this study, a method adapting the Tresca failure criterion is proposed for calculating settlement of granular compaction pile. Proposed method can be considered the strength of pile material, pile diameter, installing distance of pile and the deformation behavior of vertical and horizontal directions of pile. In the presented study, large-scale field load test is performed and the results are described. Also, predictions of settlements from the proposed method are compared with the results of the load test. In addition, a series of parametric study is performed and the design parameters are analyzed.

  • PDF

Discrete element modeling of strip footing on geogrid-reinforced soil

  • Sarfarazi, Vahab;Tabaroei, Abdollah;Asgari, Kaveh
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.435-449
    • /
    • 2022
  • In this paper, unreinforced and geogrid-reinforced soil foundations were modeled by discrete element method and this performed under surface strip footing loads. The effects of horizontal position of geogrid, vertical position, thickness, number, confining pressure have been investigated on the footing settlement and propagation of tensile force along the geogrids. Also, interaction between rectangular tunnel and strip footing with and without presence of geogrid layer has been analyzed. Experimental results of the literature were used to validation of relationships between the numerically achieved footing pressure-settlement for foundations of reinforced and unreinforced soil. Models and micro input parameters which used in the numerical modelling of reinforced and unreinforced soil tunnel were similar to parameters which were used in soil foundations. Model dimension was 1000 mm* 600 mm. Normal and shear stiffness of soils were 5*105 and 2.5 *105 N/m, respectively. Normal and shear stiffness of geogrid were 1*109 and 1*109 N/m, respectively. Loading rate was 0.001 mm/sec. Micro input parameters used in numerical simulation gain by try and error. In addition of the quantitative tensile force propagation along the geogrids, the footing settlements were visualized. Due to collaboration of three layers of geogrid reinforcements the bearing capacity of the reinforced soil tunnel was greatly improved. In such practical reinforced soil formations, the qualitative displacement propagations of soil particles in the soil tunnel and the quantitative vertical displacement propagations along the soil layers/geogrids represented the geogrid reinforcing impacts too.