DOI QR코드

DOI QR Code

Numerical Analysis of Pile Foundation Considering the Thawing and Freezing Effects

융해-동결작용을 고려한 말뚝 기초에 관한 수치해석 연구

  • Park, Woo-Jin (Dept. of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean Univ.) ;
  • Park, Dong-Su (Dept. of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean Univ.) ;
  • Shin, Mun-Beom (Dept. of Ocean Engineering, Korea Maritime and Ocean Univ.) ;
  • Seo, Young-Kyo (Dept. of Ocean Engineering, Korea Maritime and Ocean Univ.)
  • 박우진 (한국해양대학교 해양과학기술융합학과) ;
  • 박동수 (한국해양대학교 해양과학기술융합학과) ;
  • 신문범 (한국해양대학교 해양공학과 ) ;
  • 서영교 (한국해양대학교 해양공학과 )
  • Received : 2023.05.12
  • Accepted : 2023.05.22
  • Published : 2023.05.31

Abstract

Numerical analysis was conducted to determine the effect of soil behavior by thawing and freezing of seasonal frozen soil on pile foundations. The analysis was performed using the finite element method (FEM) to simulate soil-pile interaction based on the atmosphere temperature change. Thermomechanical coupled modeling using FEM was applied with the temperature-dependent nonlinear properties of the frozen soil. The analysis model cases were applied to the MCR and HDP models to simulate the elastoplastic behavior of soil. The numerical analysis results were analyzed and compared with various conditions having different length and width sizes of the pile. The results of the numerical analysis showed t hat t he HDP model was relat ively passive, and t he aspect and magnit ude of t he bearing capacit y and displacement of the pile head were similar depending on the length and width of the pile conditions. The vertical displacement of the pile head by thawing and freezing of the ground showed a large variation in displacement for shorter length conditions. In the MCR model, the vertical displacement appeared in the maximum thaw settlement and frost heaving of 0.0387 and 0.0277 m, respectively. In the HDP model, the vertical displacement appeared in the maximum thaw settlement and frost heaving of 0.0367 and 0.0264 m, respectively. The results of the pile bearing capacity for the two elastoplastic models showed a larger difference in the width condition than the length condition of the pile, with a maximum of about 14.7% for the width L condition, a maximum of about 5.4% for M condition, and a maximum of about 5.3% for S condition. The significance of the effect on the displacement of the pile head and the bearing capacity depended on the pile-soil contact area, and the difference depended on the presence or absence of an active layer in the soil and its thickness.

계절성 동토의 온도 변화에 따른 융해 및 동결작용에 의한 지반의 거동이 말뚝 기초의 변위 및 지지력에 끼치는 영향을 파악하기 위한 수치해석을 수행하였다. 수치해석은 온도 변화에 따른 지반-말뚝 상호작용을 모사하기 위해 유한요소법 기반의 TM 모델링(Thermo-Mechanical coupled Modeling)을 적용하였으며, 동결 지반은 온도 의존적 비선형 물성을 적용하였다. 지반의 구성 모델은 소성 거동을 모사하기 위한 MCR 모델(Mohr Coulomb with Rankine Tensile cut-off Model)과 HDP 모델(Nonlinear Hyperbolic Drucker-Prager Model)을 각각 적용하였으며, 말뚝의 길이 및 너비 조건을 선정해 수치해석 결과를 비교 및 분석하였다. 수치해석 결과는 HDP 구성 모델이 비교적 작은 지반 거동과 지지력을 보였으나, 전체적으로는 말뚝의 길이 및 너비 조건에 따라 지지력 및 말뚝 머리의 변위 결과의 양상과 그 크기는 유사하게 나타났다. 지반의 융해-동결작용으로 인한 말뚝 머리(pile head)의 수직 변위는 길이 조건이 짧을수록 변위의 변화 폭이 크게 나타났다. 수직 변위는 길이 조건에 따라 MCR 구성 모델에서는 최대 0.0387m의 융해 침하와 0.0277m의 동결 융기가 발생했으며, HDP 구성 모델에서는 최대 0.0367m의 융해 침하와 0.0264m의 동결 융기가 발생했다. 또한 두 탄소성 모델에 대한 말뚝의 지지력 결과는 말뚝의 길이 조건보다 너비 조건에서 더 큰 차이를 보였으며, 너비 조건 L에서 최대 약 14.7%, M에서 최대 약 5.4%, S에서 최대 약 5.3%가 발생하였다. 이에 말뚝 머리의 수직 변위와 말뚝의 지지력은 말뚝-지반의 접촉 면적에 영향을 크게 받으며, 지반 내 활성층의 활성도에 따라 차이를 보였다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단(No. 2021R1F1A1051104)의 지원을 받아 수행된 연구입니다.

References

  1. ABAQUS (2016), "ABAQUS user's manual" ABAQUS 2016, Rhode Island, Dssault Systems. 
  2. Anderson, J. B., Townsend, F. C., and Grajales, B. (2003), "Case History Evaluation of Laterally Loaded Piles", J. of Geotechnical and Geoenvironmental Engineering, Vol.129, No.3, pp.187-196.  https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(187)
  3. Akhtar, S. and Li, B. (2020), "Numerical Analysis of Pipeline Uplift Resistance in Frozen Clay Soil Considering Hybrid Tensile-shear Yield behaviors", International Journal of Geosynthetics and Ground Engineering, Vol.6, pp.1-12.  https://doi.org/10.1007/s40891-020-0186-6
  4. Aldaeef, A. A. and Rayhani, M. T. (2019), "Load Transfer of Pile Foundations in Frozen and Unfrozen Soft Clay", International Journal of Geotechnical Engineering, Vol.14, No.6, pp.653-664.  https://doi.org/10.1080/19386362.2019.1667127
  5. Bolton, M. D. (1987), "Discussion: The Strength and Dilatancy of Sands", Geotechnique, Vol.37, No.2, pp.219-226.  https://doi.org/10.1680/geot.1987.37.2.219
  6. Bong, T.H., Kim, B.I., and Han, J.T. (2018), Estimation of Ultimate Bearing Capacity of SCP and GCP Reinforced Clay for Laboratory Load Test Data, J. of the Korean Geotechnical Society, Vol.34, No.6, pp.37-47. 
  7. Fjaer, E., Holt, R. M., Horsrud, P., and Raaen, A. M. (2008), "Petroleum Related Rock Mechanics", Elsevier. 
  8. Gan, F. L. and Zhao, D. (2014), "The Analysis of Finite Element about the Interaction between Seasonal Frozen Soil and Tower Pile Foundation", In Applied Mechanics and Materials, Trans Tech Publications Ltd, Vol.680, pp.220-223.  https://doi.org/10.4028/www.scientific.net/AMM.680.220
  9. Hinkel, K. M., Paetzold, F., Nelson, F. E., and Bockheim, J. G. (2001), "Patterns of Soil Temperature and Moisture in the Active Layer and Upper Permafrost at Barrow, Alaska: 1993-1999", Global and Planetary Change, Vol.29, No.3-4, pp.293-309.  https://doi.org/10.1016/S0921-8181(01)00096-0
  10. Holubec, I. and Eng, P. (2008), "Flat Loop Thermosyphon Foundations in Warm Permafrost", Holubec Consulting Inc, 119. 
  11. Hu, X.D., Wang, J.T., and Yu, R.Z. (2013), "Uniaxial Compressive and Splitting Tensile Tests of Artificially Frozen Soils in Tunnel Construction of Hong Kong", J of Shanghai Jiaotong Univ (Sci), Vol.18, No.6, pp.688-692.  https://doi.org/10.1007/s12204-013-1450-x
  12. Jozefiak, K., Zbiciak, A., Maslakowski, M., and Piotrowski, T. (2015), "Numerical Modelling and Bearing Capacity Analysis of Pile Foundation", Procedia Engineering, Vol. 11, pp.356-363.  https://doi.org/10.1016/j.proeng.2015.07.101
  13. La Placa, S. J. and Post, B. (1960), "Thermal Expansion of Ice", Acta Crystallographica, Vol.13, No.6, pp.503-505.  https://doi.org/10.1107/S0365110X60001205
  14. Lee, J. G. (2016), Construction Technology in Cold Regions, J. of the Architectural Institute of Korea, Vol.60, No.5, pp.32-36. 
  15. Leung, R.K.Y., Ko, K.K.Y., Hu, H.B., Cheung, A.K.K., and Chan, W.L. (2012), "Artificial Ground Freezing for TBM Break-through-design Consideration", In: Proceedings of the HKIE geotechnical division annual seminar, pp.119-124. 
  16. Li, B. and Wong, R. C. K. (2016), "Quantifying Structural States of Soft Mudrocks", J. of Geophysical Research: Solid Earth, Vol.121, No.5, pp.3324-3347.  https://doi.org/10.1002/2015JB012454
  17. Liu, J., Wang, T., Tai, B., and Lv, P. (2018), "A Method for Frost Jacking Prediction of Single Pile in Permafrost", Acta Geotechnica, Vol.15, pp.455-470.  https://doi.org/10.1007/s11440-018-0711-0
  18. de Souza Neto, E. A., Peric, D., and Owen, D. R. (2011), "Computational methods for plasticity: theory and applications", John Wiley & Sons. 
  19. Nixon, J. F. (1991), "Discrete Ice Lens Theory for Frost Heave in Soils", J. of Canadian Geotechnical, Vol.28, No.6, pp.843-59.  https://doi.org/10.1139/t91-102
  20. Park, J.J., Lee, K.W., You, S.K., and Hong, G.W. (2017), Numerical Study on the Effect of Steel Pipe Specification on Pile Behaviour, J. of the Korean Geotechnical Society, Vol.33, No.5, pp.37-44. 
  21. Romanovsky, V. E. and Osterkamp, T. E. (1995), "Interannual Variations of the Thermal Regime of the Active Layer and Near-surface Permafrost in Northern Alaska", Permafrost and Periglacial Processes, Vol.6, No.4, pp.313- 335.  https://doi.org/10.1002/ppp.3430060404
  22. Tang, L., Cui, Y., Chen, J., Yang, G., Sun, S., Li, G., and Jia, H. (2022), "Analysis and Research on the Difference of Design Codes for Vertical Bearing Capacity of Pile Foundation in Cold Regions", J. of Cold Regions Science and Technology, 103723. 
  23. U. S. Army and Air force (1983), "Artic and Subarctic Construction Foundation for Structures", Department of The Army and The Air Force. 
  24. Wang, X., Chang, D., and Liu, J. (2022), "Numerical Simulation of Frost Jacking Response of a Single Pile Considering Hydro-thermo-mechanical Coupling" Research in Cold and Arid Regions. 
  25. Yin, J-H (1999), "Properties and behaviour of Hong Kong Marine Deposits with Different Clay Contents", J. of Can Geotech, Vol.36, No.6, pp.1085-1095.  https://doi.org/10.1139/t99-068
  26. Yin, J-H (2001), "Stress-strain-strength Characteristics of Soft Hong Kong Marine Deposits without or with Cement Treatment", Lowl Technol Int, Vol.3, No.1, pp.1-13. 
  27. Yoo, C.S. (2013), Numerical Investigation into behavior of Retaining Wall Subject to Cycles of Freezing and Thawing, J. of the Korean Geotechnical Society, Vol.29, No.1, pp.81-92.  https://doi.org/10.7843/kgs.2013.29.1.81
  28. Zhang, H., Zhang, J., Zhang, Z., Chen, J., and You, Y. (2016), "A Consolidation Model for Estimating the Settlement of Warm Permafrost", J. of Computers and Geotechnics, Vol.76, pp.43-50. https://doi.org/10.1016/j.compgeo.2016.02.013