Browse > Article
http://dx.doi.org/10.12989/gae.2022.29.4.435

Discrete element modeling of strip footing on geogrid-reinforced soil  

Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology)
Tabaroei, Abdollah (Department of Civil Engineering, Eshragh Institute of Higher Education)
Asgari, Kaveh (Department of Mining Engineering, Shahid Bahonar University of Kerman)
Publication Information
Geomechanics and Engineering / v.29, no.4, 2022 , pp. 435-449 More about this Journal
Abstract
In this paper, unreinforced and geogrid-reinforced soil foundations were modeled by discrete element method and this performed under surface strip footing loads. The effects of horizontal position of geogrid, vertical position, thickness, number, confining pressure have been investigated on the footing settlement and propagation of tensile force along the geogrids. Also, interaction between rectangular tunnel and strip footing with and without presence of geogrid layer has been analyzed. Experimental results of the literature were used to validation of relationships between the numerically achieved footing pressure-settlement for foundations of reinforced and unreinforced soil. Models and micro input parameters which used in the numerical modelling of reinforced and unreinforced soil tunnel were similar to parameters which were used in soil foundations. Model dimension was 1000 mm* 600 mm. Normal and shear stiffness of soils were 5*105 and 2.5 *105 N/m, respectively. Normal and shear stiffness of geogrid were 1*109 and 1*109 N/m, respectively. Loading rate was 0.001 mm/sec. Micro input parameters used in numerical simulation gain by try and error. In addition of the quantitative tensile force propagation along the geogrids, the footing settlements were visualized. Due to collaboration of three layers of geogrid reinforcements the bearing capacity of the reinforced soil tunnel was greatly improved. In such practical reinforced soil formations, the qualitative displacement propagations of soil particles in the soil tunnel and the quantitative vertical displacement propagations along the soil layers/geogrids represented the geogrid reinforcing impacts too.
Keywords
geogrid; footing settlement; PFC 2D; strip footing;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Lin, Q. and Cao, P. (2020), "Strength and failure characteristics of jointed rock mass with double", Theor. Appl. Fract. Mech., 109(7), 45-61. https://doi.org/10.1016/j.tafmec.2020.102692.   DOI
2 Lin, Q. and Cao, P. (2021a), "Mechanical behavior of a jointed rock mass with a circular hole under compression-shear loading: Experimental and numerical studies", Theor. Appl. Fract. Mech., 114(4), 45-67. https://doi.org/10.1016/j.tafmec.2021.102998.   DOI
3 Lu, M. a nd Mcdowell, G.R. (2006), "The importance of modelling ballast particle shape in the discrete element method", Granular. Matter., 9(1-2) 69-80. https://doi.org/10.1007/s10035-006-0021-3.   DOI
4 Wang, Z. and Jacobs, F. (2020), "Visualisation and quantification of geogrid reinforcing effects under strip footing loads using discrete element method", Geotext. Geomembranes, 48, 62-70. https://doi.org/10.1016/j.geotexmem.2019.103505.   DOI
5 Wang, Z., Jacobs, F. and Ziegler, M. (2014), "Visualization of load transfer behaviour between geogrid and sand using PFC2D", Geotext. Geomembranes, 42(2), 83-90. https://doi.org/10.1016/j.geotexmem.2014.01.001.   DOI
6 Yang, G. and Liu, H. (2012), "Geogrid-reinforced lime-treated cohesive soil retaining wall: case study and implications", Geotext. Geomembranes, 35, 112-118. https://doi.org/10.1016/j.geotexmem.2012.09.001.   DOI
7 Yang, X.L. (2018), "Catastrophe analysis of active-passive mechanisms for shallow tunnels with settlement", Geomech. Eng., 15(1), 99-111. https://doi.org/10.12989/gae.2018.15.1.621.   DOI
8 Ngo, N.T., Indraratna, B. and Rujikiatkamjorn, C. (2016), "Modelling geogrid-reinforced railway ballast using the discrete element method", Transp. Geotech., 8, 86-102. https://doi.org/10.1016/j.trgeo.2016.04.005.   DOI
9 Sweta, K. and Hussaini, S.K.K. (2019), "Performance of the geogrid-reinforced railroad ballast in direct shear mode". Proceedings of the Institution of Civil Engineers. Ground Improvement, 172(4), 244-256. https://doi.org/10.1680/jgrim.18.00107.   DOI
10 Teixeira, S.H.C., Bueno, B.S. and Zornberg, J.G. (2007), "Pullout resistance of individual longitudinal and transverse geogrid ribs", J. Geotech. Geoenviron. Eng., 133(1), 37-50. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(37).   DOI
11 Thornton, C. (2000), "Numerical simulations of deviatoric shear deformation of granular media", Geotechnique, 50(1), 43-53. https://doi.org/10.1680/geot.2000.50.1.43.   DOI
12 Qian, Y., Tutumluer, E. and Mishra, D. (2018), "Triaxial testing and discrete-element modelling of geogrid-stabilised rail ballast", Proceedings of the Institution of Civil Engineers-Ground Improvement, 171(4), 223-231. https://doi.org/10.1680/jgrim.17.00068.   DOI
13 Zhang, J., Zheng, J.J. and Chen, B.G. (2013), "Coupled mechanical and hydraulic modeling of a geosynthetic-reinforced and pile-supported embankment", Comput. Geotech., 52, 28-37. https://doi.org/10.1016/j.compgeo.2013.03.003.   DOI
14 Miao, C.X., Zheng, J.J., Zhang, R.J. and Cui, L. (2017), "DEM modeling of pullout behavior of geogrid reinforced ballast: the effect of particle shape", Comput. Geotech., 81, 249-261. https://doi.org/10.1016/j.compgeo.2016.08.028.   DOI
15 Moradi, G.H. (2019), "Small- and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method", Geomech. Eng., 18(3), 123-138. https://doi.org/10.12989/gae.2019.18.3.315.   DOI
16 Ngo, N.T., Indraratna, B. and Rujikiatkamjorn, C. (2014), "DEM simulation of the behaviour of geogrid stabilised ballast fouled with coal", Comput. Geotech. 55, 224-231. https://doi.org/10.1016/j.compgeo.2013.09.008.   DOI
17 Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143,   DOI
18 Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A. (2021b), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 15(3), 77-88. https://doi.org/10.1016/j.mechmat.2020.103730.   DOI
19 Yaylaci M., Adiyaman E., Oner E. and Birinci A., (2021a), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.   DOI
20 Ngo, N.T., Indraratna, B. and Rujikiatkamjorn, C. (2017), "A study of the geogrid-subballast interface via experimental evaluation and discrete element modelling", Granular Matter., 19(3), 54. https://doi.org/10.1007/s10035-017-0743-4.   DOI
21 Oner E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.   DOI
22 Tran, V.D.H., Meguid, M.A. and Chouinard, L.E. (2015), "Three-dimensional analysis of geogrid- reinforced soil using a finite-discrete element framework", Int. J. Geomech., 15(4), 04014066. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000410.   DOI
23 Biabani, M.M., Ngo, N.T. and Indraratna B. (2016), "Performance evaluation of railway subballast stabilised with geocell based on pull-out testing", Geotext. Geomembranes, 44(4), 579-591. https://doi.org/10.1016/j.geotexmem.2016.03.006   DOI
24 Demir, A., Yildiz, A., Laman, M. and Ornek, M. (2014), "Experimental and numerical analyses of circular footing on geogrid-reinforced granular fill underlain by soft clay", Acta Geotech., 9(4), 711-723. https://doi.org/10.1007/s11440-013-0207-x.   DOI
25 Chen, C., Mcdowell, G. and Rui, R. (2018), "Discrete element modelling of geogrids with square and triangular apertures", Geomech. Eng., 16(5), 495-501. http://doi.org/10.12989/gae.2018.16.5.495.   DOI
26 Chen, Q. (2007), "An Experimental Study on Characteristics and Behavior of Reinforced Soil Foundation", Ph.D. thesis. Louisiana State University, USA.
27 Das, B.M., Shin, E.C. and Omar, M.T. (1994), "The bearing capacity of surface strip foundations on geogrid-reinforced sand clay- a comparative study", Geotech. Geol. Eng., 12(1), 1-14. https://doi.org/10.1007/BF00425933.   DOI
28 Esmaeili, M., Zakeri, J.A. and Babaei, M. (2017), "Laboratory and field investigation of the effect of geogrid-reinforced ballast on railway track lateral resistance", Geotext. Geomembranes, 45(2), 23-33. https://doi.org/10.1016/j.geotexmem.2016.11.003.   DOI
29 Rezaei, A.H. (2019), "EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements", Geomech. Eng., 19(2), 89-99. https://doi.org/10.12989/gae.2019.19.2.153.   DOI
30 Uzun Yaylaci, E., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563 https://doi.org/10.12989/cac.2020.25.6.551.   DOI
31 Bathurst, R.J., Lin, P. and Allen, T.M. (2019), "Reliability-based designof internal limit states for mechanically stabilized earth walls usinggeosynthetic reinforcement", Can Geotech. J., 56(6), 774-788. https://doi.org/10.1139/cgj-2018-0074.   DOI
32 Gu, F., Luo, X. and Luo, R. (2016), "Numerical modeling of geogrid-reinforced flexible pavement and corresponding validation using large-scale tank test", Constr. Build. Mater., 122, 214-230. https://doi.org/10.1016/j.conbuildmat.2016.06.081.   DOI
33 Gutierrez, M., Muftah, A. (2015), "Micro and Macro Behavior of Granular Materials in Simple Shear", Crc Press-Taylor & Francis Group, Boca Raton., 91-96. DOI: 10.1201/b17395-15   DOI
34 Luat, N. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils". Geomech. Eng., 20(5), 33-45. http://doi.org/10.12989/gae.2020.20.5.385.   DOI
35 Mcdowell, G.R. and Harireche, O. (2002), "Discrete element modelling of soil particle fracture", Geotechnique, 52(2), 131-135. https://doi.org/10.1680/geot.2002.52.2.131.   DOI
36 Mcdowell, G.R., Harireche, O. and Konietzky, H. (2006), "Discrete element modelling of geogrid-reinforced aggregates". Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 159(1), 35-48. https://doi.org/10.1680/geng.2006.159.1.35.   DOI
37 Huang, C.C. and Tatsuoka, F. (1990), "Bearing capacity of reinforced horizontal sandy ground", Geotext. Geomembranes, 9(1), 51-82. https://doi.org/10.1016/0266-1144(90)90005-W.   DOI
38 Indraratna, B. and Rujikiatkamjorn, C. (2011), "Behavior of geogridreinforced ballast under various levels of fouling", Geotext. Geomembranes, 29(3), 313-322. https://doi.org/10.1016/j.geotexmem.2011.01.015.   DOI
39 Allen, T.M. and Bathurst, R.J. (2018), "Application of the simplified stiff-ness method to design of reinforced soil walls", J. Geotech. Geoenviron. Eng., 144(5), 04018024. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001874.   DOI
40 Bathurst, R.J. and Javankhoshdel, S. (2017a), "Influence of model type, biasand input parameter variability on reliability analysis for simple limitstates in soil-structure interaction problems", Georisk, 11(1). 42-54. https://doi.org/10.1080/17499518.2016.1154160   DOI
41 Zhao, X. and Evans, T.M. (2009), "Discrete simulations of laboratory loading conditions", Int. J. Geomech., 9(4), 169-178. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(169).   DOI
42 Wang, Z., Jacobs, F. and Ziegler, M. (2016), "Experimental and DEM investigation of geogridsoil interaction under pullout loads". Geotext. Geomembranes, 44(3), 230-246. https://doi.org/10.1016/j.geotexmem.2015.11.001.   DOI
43 Yaylaci M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.   DOI
44 Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A., (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 23(3), 21-34. https://doi.org/10.12989/sem.2020.76.3.325.   DOI
45 Indraratna, B., Hussaini, S.K.K. and Vinod, J.S. (2012), "On The Shear Behavior of Ballast-Geosynthetic Interfaces", Geotech. Test. J., 35(2), 305-312. https://doi.org/10.1520/GTJ103317.   DOI
46 Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069.   DOI
47 Bathurst, R.J., Javankhoshdel, S. and Allen, T.M. (2017b), "LRFD calibra-tion of simple soil-structure limit states considering method bias anddesign parameter variability", J. Geotech. Geoenviron. Eng., 143(9), 04017053. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001735.   DOI
48 Brown, S.F., Kwan, J. and Thom, N.H. (2007), "Identifying the key parameters that influence geogrid reinforcement of railway ballast", Geotext. Geomembranes, 25(6), 326-335. https://doi.org/10.1016/j.geotexmem.2007.06.003.   DOI
49 Nimbalkar, S., Neville, T. and Indraratna, B. (2014), "Performance assessment of reinforced ballasted rail track", Proceedings of the ICE - Ground Improvement, 167(1), 24-34. https://doi.org/10.1680/grim.13.00018.   DOI
50 Dong, Y.L., Han, J. and Bai, X.H. (2011), "Numerical analysis of tensile behavior of geogrids with rectangular and triangular apertures", Geotext. Geomembranes, 29(2), 83-91. https://doi.org/10.1016/j.geotexmem.2010.10.007.   DOI
51 Miao, C.X., Zheng, J.J. and Zhang, R.J. (2017), "Visualization of pullout behaviour of geogrid in sand with emphasis on size effect of protrusive junctions", J. Central South Univ., 24(9), 2121-2133. https://doi.org/10.1007/s11771-017-3621-7.   DOI
52 Lin, P. and Bathurst, R.J. (2018a), "Influence of cross-correlation betweennominal load and resistance on reliability-based design for simple linearsoil-structure limit states", Can. Geotech. J., 55, (2), 279-295. https://doi.org/10.1139/cgj-2017-0012.   DOI
53 Indraratna, B., Hussaini, S.K.K. and Vinod, J.S. (2013), "The lateral displacement response of geogrid-reinforced ballast under cyclic loading", Geotext. Geomembranes, 39, 20-29. https://doi.org/10.1016/j.geotexmem.2013.07.007.   DOI
54 Khing, K.H., Das, B.M., Puri, V.K., Cook, E.E. and Yen, S.C. (1993), "The bearing-capacity of a strip foundation on geogrid-reinforced sand", Geotext. Geomembranes, 12(4), 351-361. https://doi.org/10.1016/0266-1144(93)90009-D.   DOI
55 Lin Q. and Cao, P. (2021b), "Crack coalescence in rock-like specimens with two dissimilar layers and pre-existing double parallel joints under uniaxial compression", Int. J. Rock Mech. Min. Sci., 139(8), 98-105. https://doi.org/10.1016/j.ijrmms.2021.104621.   DOI
56 Han, B.Y., Ling, J.M. and Shu, X. (2018), "Laboratory investigation of particle size effects on the shear behavior of aggregate-geogrid interface", Constr. Build. Mater., 158, 1015-1025. https://doi.org/10.1016/j.conbuildmat.2017.10.045.   DOI
57 Choudhary, A.K. and Krishna, A.M. (2016), "Experimental investigation of interface behaviour of different types of granular soil/geosynthetics", Int. J. Geosynth. Ground Eng., 2(1) 11. https://doi.org/10.1007/s40891-016-0044-8.   DOI
58 Dong, T., Cao, P. and Lin, Q. (2020), "Size effect on mechanical properties of rock-Like materials with three joints", Geotech. Geol. Eng., 38(11), 66-77. https://doi.org/10.1007/s43452-020-00027-z.   DOI
59 Gao, G. and Meguid, M.A. (2018), "Effect of particle shape on the response of geogrid-reinforced systems: insights from 3D discrete element analysis", Geotext. Geomembranes, 46(1), 685-698. https://doi.org/10.1016/j.geotexmem.2018.07.001.   DOI
60 Kim, D. (2020), "Determination of effective parameters on surface settlement during shield TBM", Geomech. Eng., 21(2), 56-72. https://doi.org/10.12989/gae.2020.21.2.153.   DOI
61 Lin, P. and Bathurst, R.J. (2018b), "Reliability-based internal limit statesanalysis and design of soil nails using different load and resistancemodels", J. Geotech. Geoenviron. Eng., 144(5), 04018022. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001862.   DOI