• Title/Summary/Keyword: vertical bars

Search Result 133, Processing Time 0.021 seconds

Shear Strength of Vertical Joints in Precast Concrete Panel with Shear Key (전단키를 갖는 프리캐스트 콘크리트 패널 수직접합부의 전단강도)

  • Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.151-158
    • /
    • 2019
  • A concrete core is used widely as lateral stability systems in high-rise modular buildings. As an alternative to traditional cast in-situ core, the precast concrete(PC) method can accelerate the construction of reinforced concrete cores. A core composed of precast elements differs from a in-situ core in having connections between the precast elements. The typical vertical connection between PC panels is consisted of shear keys, loop bars, lacer bars and grout. In this study, the effect of vertical connection components on shear strength is investigated experimentally. The test results show that the contribution to the shear strength is greater in order of grout strength, shear keys, lacer bars and loop bars. In addition, the numerical models to estimate the shear strength according to two crack patterns in the vertical joint of the PC panels are derived. The feasibility of the numerical models is evaluated by comparing the estimated shear strength and the test results.

Out-of-plane behavior of perforated masonry walls strengthened with steel-bar truss system

  • Hwang, Seung-Hyeon;Mun, Ju-Hyun;Yang, Keun-Hyeok;Kim, Sanghee
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.799-810
    • /
    • 2022
  • This study investigated the effect of the strengthening efficiency of unbonded steel-bar truss system on the out-of-plane behavior of perforated masonry walls. Four full-scale unreinforced masonry (URM) walls with two different planes were prepared using the unbonded steel-bar truss system and a URM walls without strengthening. All masonry walls were tested under constant axial and cyclic lateral loads. The obtained test results indicated that the pinching effect in the out-plane behavior of masonry walls tends to decrease in the in- and out-of-plane strengthened URM walls using the unbonded steel-bar truss system with the higher prestressing force ratio (Rp) of vertical reinforcing bars in the unbonded steel-bar truss system, regardless of the perforated type of the masonry wall. Consequently, the highest maximum shear resistance and cumulative dissipated energy at peak load in the post-peak behavior were observed in the in- and out-plane strengthened URM walls with the highest Rp values, which are 2.7 and 6.0 times higher than those of URM. In particular, the strengthening efficiency of the unbonded steel-bar truss system was primarily attributed to the vertical prestressed steel-bars rather than the diagonal steel-bars, which indicates that the strains in the vertical prestressed steel-bars at the peak load were approximately 1.6 times higher than those in the diagonal steel-bars.

Detecting location of reinforcing bars in concrete using synthetic aperture radar method (합성개구 레이더법에 의한 콘크리트 내 철근위치 산정)

  • Park, Seok-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.602-605
    • /
    • 2006
  • Locating reinforcing bars, in particular to know their accurate depths and horizontal distances, is very important in radar inspection of concrete structures. By the way, it is not easy for an accurate depth and horizontal distance estimation of reinforcing bars in concrete structures by the radar test. This problem can be solved by synthetic aperture radar method. To improve the vertical and horizontal resolution of reinforcing bars in concrete, synthetic aperture radar method was examined in this study.

  • PDF

The Kinematic Analysis of Peters Motion on Parallel bars (평행봉 피터스 동작의 운동학적 분석)

  • Yoon, Hee-Joong;Yoon, Chang-Sun;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.15-26
    • /
    • 2004
  • The purpose of this study was to investigate the kinematic variables of peters motion in parallel bars. The subjects were 3 male national gymnasts. For this study, kinematic data were collected using video camera. Coordinate data were low-pass filtered using a fourth-order Butterworth with cutoff frequency of 6Hz. Each valuables analyzed was used to compare kinematic features between the subjects. The conclusions were as follows; 1. For a stable regrasp motion, the subjects appeared to increase horizontal and vertical displacement during the DS phase because it induce a vertical elastic of body and reaction of bar for the US phase. 2. For a stable hand standing motion of the regrasp, the subjects appeared to maintain the fast vertical and horizontal velocity during the DS phase, but in contrary during the US and Air phase the vertical and horizontal velocity appeared to do decrease. 3. When the arm lean angle and the trunk lean angle maintain a big angle during the DS phase, the subjects appeared to do a stable performance to release in a high position.

A Kinematical Analysis of the Kenmotsu on the Parallel Bars (평행봉 Kenmotsu 동작의 운동학적 분석)

  • Kong, Tae-Ung;Kim, Young-Sun;Yoon, Chang-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.61-70
    • /
    • 2005
  • The purpose of study was to investigate the kinematic variables of Kenmotsu motion in Parallel bars. To this study, by 3 dimensional kinematical analysis of 4 male national gymnasts participants in the 28th Athens Olympic Game in 2004, kinematic data collected using video camera. Coordinate data were smoothed by using a fourth-order Butterworth low pass digital filter with cutoff frequency of 6Hz. The conclusions were as follows. 1. In P2, because the constrained swing movement made the movement of a rising back difficult7, the movements of Reg. were performed at low position after Air phase. 2. In E5 event, for the shake of a stable handstand and applied techniques like a Belle(E-value), a Belle Piked(super E-value), a vertical velocity in E2, a horizontal velocity in E3 and a vertical velocity in E4 were necessary for high velocities. 3. In E4 event, it was appeared that for a flexible body's movement of a vertical up-flight, the large angle of the shoulder joint and the flexion & extension of the hip joint were necessary in Air phase and a long flight time and vertical displacement made Reg. movements stable at the high position.

In-plane seismic performance of masonry wall retrofitted with prestressed steel-bar truss

  • Hwang, Seung-Hyeon;Kim, Sanghee;Yang, Keun-Hyeok
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.459-469
    • /
    • 2020
  • An external prestressed steel-bar truss unit was developed as a new strengthening technology to enhance the seismic performance of an in-plane masonry wall structure while taking advantage of the benefits of a prestressed system. The presented method consists of six steel bars: two prestressed vertical bars to introduce a prestressing force on the masonry wall, two diagonal bars to resist shear deformation, and two horizontal bars to maintain the configuration. To evaluate the effects of this new technique, four full-scale specimens, including a control specimen, were tested under combined loadings that included constant-gravity axial loads and cyclic lateral loads. The experimental results were analyzed in terms of the shear strength, initial stiffness, dissipated energy, and strain history. The efficiency of the external prestressed steel-bar truss unit was validated. In particular, a retrofitted specimen with an axial load level of 0.024 exhibited a more stable post behavior and higher energy dissipation than a control specimen with an observed complete sliding failure. The four vertical bars of the adjacent retrofitting units created a virtual column, and their strain values did not change until they reached the peak shear strength. The shear capacity of the masonry wall structure with external prestressed steel-bar truss units could be predicted using the model suggested by Yang et al.

Design and Analysis on The Connections of RC Precast Large Panel (철근콘크리트 프리캐스트 대형판 접합부의 설계 및 해석)

  • Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.85-92
    • /
    • 2006
  • Precast large panel structures have various connection system such as the horizontal slab-to-wall connection, the vertical wall to wall connection, horizontal slab-to-slab connection, etc. Horizontal connection is connected by vertical tie bars, and vertical joint is connected loop bars and shear keys. The basic function is equalized deformations on later forces and the entire wall panel assembly acts as monolithic actions. Under lateral load some slip occurs in almost vertical connections. The shape and detail of precast connections are very important to the monolithic behavior of overall structures. The paper is a study on the design method and new elasto-plastic analysis of the connections by rigid-bodies spring model.

  • PDF

Three-dimensional accuracy of different correction methods for cast implant bars

  • Kwon, Ji-Yung;Kim, Chang-Whe;Lim, Young-Jun;Kwon, Ho-Beom;Kim, Myung-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • PURPOSE. The aim of the present study was to evaluate the accuracy of three techniques for correction of cast implant bars. MATERIALS AND METHODS. Thirty cast implant bars were fabricated on a metal master model. All cast implant bars were sectioned at 5 mm from the left gold cylinder using a disk of 0.3 mm thickness, and then each group of ten specimens was corrected by gas-air torch soldering, laser welding, and additional casting technique. Three dimensional evaluation including horizontal, vertical, and twisting measurements was based on measurement and comparison of (1) gap distances of the right abutment replica-gold cylinder interface at buccal, distal, lingual side, (2) changes of bar length, and (3) axis angle changes of the right gold cylinders at the step of the post-correction measurements on the three groups with a contact and non-contact coordinate measuring machine. One-way analysis of variance (ANOVA) and paired t-test were performed at the significance level of 5%. RESULTS. Gap distances of the cast implant bars after correction procedure showed no statistically significant difference among groups. Changes in bar length between pre-casting and post-correction measurement were statistically significance among groups. Axis angle changes of the right gold cylinders were not statistically significance among groups. CONCLUSION. There was no statistical significance among three techniques in horizontal, vertical and axial errors. But, gas-air torch soldering technique showed the most consistent and accurate trend in the correction of implant bar error. However, Laser welding technique, showed a large mean and standard deviation in vertical and twisting measurement and might be technique-sensitive method.

Analysis of Correlativity with the Number of Blasting Holes Due to Exposed Length of Steel Bars and Vertical Load on Scaled Reinforced Concrete Columns (축소모형 철근콘크리트 기둥에서 철근의 노출길이와 수직하중에 따른 발파공수와의 상관성 분석)

  • Park, Hoon;Yoo, Ji-Wan;Lee, Hee-Gwang;Song, Jung-Un;Kim, Sung-Kon
    • Explosives and Blasting
    • /
    • v.25 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, the 1/5 scale models of the reinforced concrete colunms were designed and fabricated. The influence of the number of blasting holes on the exposed length of steel bars and vertical load was investigated. The relation between the length of steel bar and the number of blasting holes was examined by performing the blast tests considering the vertical load on the scaled reinforced concrete columns. Weight of scaled column models by blasting and that of exposed was compared with the number of blasting holes. Finally, based on the exposed length of steel bars and vertical load, the number of blasting holes were calculated. Results shows that the number of blasting holes calculated in this study are suitable for scaled structure models test by blasting demolition.

EFFECTS OF SUPPORT STRUCTURE CHANGES ON FLOW-INDUCED VIBRATION CHARACTERISTICS OF STEAM GENERATOR TUBES

  • Ryu, Ki-Wahn;Park, Chi-Yong;Rhee, Hui-Nam
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.97-108
    • /
    • 2010
  • Fluid-elastic instability and turbulence-induced vibration of steam generator U-tubes of a nuclear power plant are studied numerically to investigate the effect of design changes of support structures in the upper region of the tubes. Two steam generator models, Model A and Model B, are considered in this study. The main design features of both models are identical except for the conditions of vertical and horizontal support bars. The location and number of vertical and horizontal support bars at the middle of the U-bend region in Model A differs from that of Model B. The stability ratio and the amplitude of turbulence-induced vibration are calculated by a computer program based on the ASME code. The mode shape with a large modal displacement at the upper region of the U-tube is the key parameter related to the fretting wear between the tube and its support structures, such as vertical, horizontal, and diagonal support bars. Therefore, the location and the number of vertical and horizontal support bars have a great influence on the fretting wear mechanism. The variation in the stability ratios for each vibrational mode is compared with respect to Model A and Model B. Even though both models satisfy the design criteria, Model A shows substantial improvements over Model B, particularly in terms of having greater amplitude margins in the turbulence-excited vibration (especially at the inner region of the tube bundle) and better stability ratios for the fluid-elastic instability.