• Title/Summary/Keyword: venting system

Search Result 50, Processing Time 0.025 seconds

The Numerical Modeling Study for the Simultaneous Flow of Leachate and LFG in Kimpo Landfill (수도권 매립지에서 침출수-가스의 동시 유동 해석을 위한 전산 모델링 연구)

  • 성원모;박용찬;이광희
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.101-106
    • /
    • 1999
  • Open dump of refuse causes groundwater and soil contamination by leachate and air pollution by LFG(Landfill Gas). In this paper, in order to perform a study about reduction of high leachate and LFG collection & control, using a 3-D, 2-phase, transient FDM model, the analysis of simultaneous flow of leachate and LFG has been carried out. In present numerical analysis it is assumed that 58 percents of LFG will evaporate to the ambient air and the recharge rate of a landfill be 12 percent of the average precipitation per year. All other data were excerpted at the point of 1995 when three refuse layers had been buried. From numerical analysis we concluded that maximum head value is approximately 26 mH2O<-에이치투오 (2.52 atm) in the center of the system and that installing venting trench plays an important role in landfill stabilization. Evan with the assumption of three layers constructed and low recharge rate applied, it is found that cumulative leachate and LFG productions will be 15.1 million 세제곱미터, 5.58 billion 세제곱미터, respectively after 40 years.

  • PDF

OVERVIEW ON HYDROGEN RISK RESEARCH AND DEVELOPMENT ACTIVITIES: METHODOLOGY AND OPEN ISSUES

  • BENTAIB, AHMED;MEYNET, NICOLAS;BLEYER, ALEXANDRE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.26-32
    • /
    • 2015
  • During the course of a severe accident in a light water nuclear reactor, large amounts of hydrogen can be generated and released into the containment during reactor core degradation. Additional burnable gases [hydrogen ($H_2$) and carbon monoxide (CO)] may be released into the containment in the corium/concrete interaction. This could subsequently raise a combustion hazard. As the Fukushima accidents revealed, hydrogen combustion can cause high pressure spikes that could challenge the reactor buildings and lead to failure of the surrounding buildings. To prevent the gas explosion hazard, most mitigation strategies adopted by European countries are based on the implementation of passive autocatalytic recombiners (PARs). Studies of representative accident sequences indicate that, despite the installation of PARs, it is difficult to prevent at all times and locations, the formation of a combustible mixture that potentially leads to local flame acceleration. Complementary research and development (R&D) projects were recently launched to understand better the phenomena associated with the combustion hazard and to address the issues highlighted after the Fukushima Daiichi events such as explosion hazard in the venting system and the potential flammable mixture migration into spaces beyond the primary containment. The expected results will be used to improve the modeling tools and methodology for hydrogen risk assessment and severe accident management guidelines. The present paper aims to present the methodology adopted by Institut de Radioprotection et de $S{\hat{u}}ret{\acute{e}}$ $Nucl{\acute{e}}aire$ to assess hydrogen risk in nuclear power plants, in particular French nuclear power plants, the open issues, and the ongoing R&D programs related to hydrogen distribution, mitigation, and combustion.

Large Scale Experiments Simulating Hydrogen Distribution in a Spent Fuel Pool Building During a Hypothetical Fuel Uncovery Accident Scenario

  • Mignot, Guillaume;Paranjape, Sidharth;Paladino, Domenico;Jaeckel, Bernd;Rydl, Adolf
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.881-892
    • /
    • 2016
  • Following the Fukushima accident and its extended station blackout, attention was brought to the importance of the spent fuel pools' (SFPs) behavior in case of a prolonged loss of the cooling system. Since then, many analytical works have been performed to estimate the timing of hypothetical fuel uncovery for various SFP types. Experimentally, however, little was done to investigate issues related to the formation of a flammable gas mixture, distribution, and stratification in the SFP building itself and to some extent assess the capability for the code to correctly predict it. This paper presents the main outcomes of the Experiments on Spent Fuel Pool (ESFP) project carried out under the auspices of Swissnuclear (Framework 2012-2013) in the PANDA facility at the Paul Scherrer Institut in Switzerland. It consists of an experimental investigation focused on hydrogen concentration build-up into a SFP building during a predefined scaled scenario for different venting positions. Tests follow a two-phase scenario. Initially steam is released to mimic the boiling of the pool followed by a helium/steam mixture release to simulate the deterioration of the oxidizing spent fuel. Results shows that while the SFP building would mainly be inerted by the presence of a high concentration of steam, the volume located below the level of the pool in adjacent rooms would maintain a high air content. The interface of the two-gas mixture presents the highest risk of flammability. Additionally, it was observed that the gas mixture could become stagnant leading locally to high hydrogen concentration while steam condenses. Overall, the experiments provide relevant information for the potentially hazardous gas distribution formed in the SFP building and hints on accident management and on eventual retrofitting measures to be implemented in the SFP building.

Rheology of PP/Clay Hybrid Produced by Supercritical $CO_2$ Assisted Extrusion

  • Lee, Sang-Myung;Shim, Dong-Cheol;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.6-14
    • /
    • 2008
  • Polypropylene (PP)-layered silicate nanocomposites were developed using a new processing method involving a supercritical carbon dioxide ($scCO_2$)-assisted co-rotating twin-screw extrusion process. The nanocomposites were prepared through two step extrusion processes. In the first step, the PP/clay mixture was extruded with $CO_2$ injected into the barrel of the extruder and the resulting foamed extrudate was cooled and pelletized. In the second step, the foamed extrudate was extruded with venting to produce the final PP/clay nanocomposites without $CO_2$. In this study, organophilic-clay and polypropylene matrix were used. Maleic anhydride grafted polypropylene (PP-g-MA) was used as a compatibilizer. This study focused on the effect of $scCO_2$ on the dispersion characteristics of the clays into a PP matrix and the rheological properties of the layered silicate based PP nanocomposites. The dispersion properties of clays in the nanocomposites as well as the rheological properties of the nanocomposites were examined as a function of the PP-g-MA concentration. The degree of dispersion of the clays in the nanocomposites was analyzed by X-ray diffraction and transmission electron microscope. Various rheological properties of the nanocomposites were measured using a rotational rheometer. In the experimental results, the $scCO_2$ assisted continuous manufacturing extrusion system was used to successfully produce the organophilic-clay filled PP nanocomposites. It was found that $scCO_2$ had a measurable effect on the clay dispersion in the polymer matrix and the melt intercalation of a polymer into clay layers.

Experimental investigation of aerosols removal efficiency through self-priming venturi scrubber

  • Ali, Suhail;Waheed, Khalid;Qureshi, Kamran;Irfan, Naseem;Ahmed, Masroor;Siddique, Waseem;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2230-2237
    • /
    • 2020
  • Self-priming venturi scrubber is one of the most effective devices used to collect aerosols and soluble gas pollutants from gaseous stream during severe accident in a nuclear power plant. The present study focuses on investigation of dust particle removal efficiency of the venturi scrubber both experimentally and theoretically. Venturi scrubber captures the dust particles in tiny water droplets flowing into it. Inertial impaction is the main mechanism of particles collection in venturi scrubber. The water injected into venturi throat is in the form of jets through multiple holes present at venturi throat. In this study, aerosols removal efficiency of self-priming venturi scrubber was experimentally measured for different operating conditions. Alumina (Al2O3) particles with 0.4-㎛ diameter and 3950 kg/㎥ density were treated as aerosols. Removal efficiency was calculated for different gas flow rates i.e. 3-6 ㎥/h and liquid flow rates i.e. 0.009-0.025 ㎥/h. Experimental results depict that aerosols removal efficiency increases with the increase in throat velocity and liquid head. While at lower air flow rate of 3 ㎥/h, removal efficiency decreases with the increase in liquid head. A theoretical model of venturi scrubber was also employed and experimental results were compared with mathematical model. Experimental results are found to be in good agreement with theoretical results.

Measurements on Effects of Locations of Obstacles in an Explosion Chamber

  • Han, Jae-Beom;Lee, Young-Soon;Park, Dal-Jae
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.68-74
    • /
    • 2008
  • Measurements were performed to investigate the effects on flame and pressure development by varying locations of multiple obstacles in a top-venting explosion chamber. The chamber dimension was 1000 mm in height with a $700\;{\times}\;700\;mm^2$ cross-section and a rectangular vent area of $700\;{\times}\;700\;mm^2$. Three different multiple obstacles with blockage ratio of 30% were used by changing from 200 mm, 500 mm to 800 mm in heights within the chamber. Temporally resolved flame front images were recorded by a high speed camera to investigate the interaction between the propagating flame and the obstacles. The results showed that the triangular bar caused the fastest flame developments at given times whereas the lowest was obtained with the cylindrical bar. It was also found that local flame displacement speeds of different obstacles were sensitive to the locations of obstacles. The local speed becomes larger in going from 200 mm, to 500 mm and to 800 mm in heights. The obstacles in height of 800 mm yielded the highest overpressure whereas the lowest was in height of 200 mm.

  • PDF

A Study on the Variation of the Coefficient of Leachate as Final Cover Systems in the Landfill (폐기물 매립지의 최종복토 구조에 따른 침출계수 변화에 관한 연구)

  • 임은진;이재영;최상일
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.2
    • /
    • pp.48-53
    • /
    • 2004
  • This study is objected to estimate the variation of the coefficient of leachate according to designs in landfill cover systems. Design (a) is the unsanitary landfill cover system with 50 cm soil. But Design (b), (c) are sanitary cover systems which are composed of soil top layer, drainage layer, barrier liner(Design (b): Geomembrane(1.5 mm) and compacted clay liner(30 cm), Design (c) compacted clay liner(45 cm)), gas venting layer. Quantity of leachate estimates Rational Method generally and depend on the coefficient of leachate, on one of the factors in Rational Method largely. The coefficient of leachate is defined as the leachate production ratio result from incident precipitation. To estimate the variation of the coefficient of leachate, the authors use HELP(Hydrologic Evaluation of Landfill Performance) Simulation and Pilot Test. As a result of HELP Simulation, the coefficient of leachate is 0.36∼0.42 in Design (a) and 0.03∼0.15 in Design (b), (c) according to designs in landfill cover systems and quality of barrier liner placement. These numerical values are similar to 0.13 with the coefficient of leachate in Pilot Test.

MANAGING A PROLONGED STATION BLACKOUT CONDITION IN AHWR BY PASSIVE MEANS

  • Kumar, Mukesh;Nayak, A.K.;Jain, V;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.605-612
    • /
    • 2013
  • Removal of decay heat from an operating reactor during a prolonged station blackout condition is a big concern for reactor designers, especially after the recent Fukushima accident. In the case of a prolonged station blackout condition, heat removal is possible only by passive means since no pumps or active systems are available. Keeping this in mind, the AHWR has been designed with many passive safety features. One of them is a passive means of removing decay heat with the help of Isolation Condensers (ICs) which are submerged in a big water pool called the Gravity Driven Water Pool (GDWP). The ICs have many tubes in which the steam, generated by the reactor core due to the decay heat, flows and condenses by rejecting the heat into the water pool. After condensation, the condensate falls back into the steam drum of the reactor. The GDWP tank holds a large amount of water, about 8000 $m^3$, which is located at a higher elevation than the steam drum of the reactor in order to promote natural circulation. Due to the recent Fukushima type accidents, it has been a concern to understand and evaluate the capability of the ICs to remove decay heat for a prolonged period without escalating fuel sheath temperature. In view of this, an analysis has been performed for decay heat removal characteristics over several days of an AHWR by ICs. The computer code RELAP5/MOD3.2 was used for this purpose. Results indicate that the ICs can remove the decay heat for more than 10 days without causing any bulk boiling in the GDWP. After that, decay heat can be removed for more than 40 days by boiling off the pool inventory. The pressure inside the containment does not exceed the design pressure even after 10 days by condensation of steam generated from the GDWP on the walls of containment and on the Passive Containment Cooling System (PCCS) tubes. If venting is carried out after this period, the decay heat can be removed for more than 50 days without exceeding the design limits.

A Study on the Element Technologies in Flame Arrester of End Line (선박의 엔드라인 폭연방지기의 요소기술에 관한 연구)

  • Pham, Minh-Ngoc;Choi, Min-Seon;Kim, Bu-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.468-475
    • /
    • 2019
  • An end-line flame arrester allows free venting in combination with flame protection for vertical vent applications. End-line flame arresters are employed in various fields, especially in shipping. In flame arresters, springs are essential parts because the spring load and the spring's elasticity determine the hood opening moment. In addition, the spring has to work under a high-temperature condition because of the burning gas flame. Therefore, it is necessary to analyze the mechanical load and elasticity of the spring when the flame starts to appear. Based on simulations of the working process of a specific end-line flame arrester, a thermal and structural analysis of the spring is performed. A three-dimensional model of a burned spring is built using computational fluid dynamics (CFD) simulation. Results of the CFD analysis are input into a finite element method simulation to analyze the spring structure. The research team focused on three cases of spring loads: 43, 93, and 56 kg, correspondingly, at 150 mm of spring deflection. Consequently, the spring load was reduced by 10 kg after 5 min under a $1,000^{\circ}C$ heat condition. The simulation results can be used to predict and estimate the spring's load and elasticity at the burning time variation. Moreover, the obtained outcome can provide the industry with references to optimize the design of the spring as well as that of the flame arrester.

Study on PM10, PM2.5 Reduction Effects and Measurement Method of Vegetation Bio-Filters System in Multi-Use Facility (다중이용시설 내 식생바이오필터 시스템의 PM10, PM2.5 저감효과 및 측정방법에 대한 연구)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.80-88
    • /
    • 2020
  • With the issuance of one-week fine dust emergency reduction measures in March 2019, the public's anxiety about fine dust is increasingly growing. In order to assess the application of air purifying plant-based bio-filters to public facilities, this study presented a method for measuring pollutant reduction effects by creating an indoor environment for continuous discharge of particle pollutants and conducted basic studies to verify whether indoor air quality has improved through the system. In this study conducted in a lecture room in spring, the background concentration was created by using mosquito repellent incense as a pollutant one hour before monitoring. Then, according to the schedule, the fine dust reduction capacity was monitored by irrigating for two hours and venting air for one hour. PM10, PM2.5, and temperature & humidity sensors were installed two meters front of the bio-filters, and velocity probes were installed at the center of the three air vents to conduct time-series monitoring. The average face velocity of three air vents set up in the bio-filter was 0.38±0.16 m/s. Total air-conditioning air volume was calculated at 776.89±320.16㎥/h by applying an air vent area of 0.29m×0.65m after deducing damper area. With the system in operation, average temperature and average relative humidity were maintained at 21.5-22.3℃, and 63.79-73.6%, respectively, which indicates that it satisfies temperature and humidity range of various conditions of preceding studies. When the effects of raising relatively humidity rapidly by operating system's air-conditioning function are used efficiently, it would be possible to reduce indoor fine dust and maintain appropriate relative humidity seasonally. Concentration of fine dust increased the same in all cycles before operating the bio-filter system. After operating the system, in cycle 1 blast section (C-1, β=-3.83, β=-2.45), particulate matters (PM10) were lowered by up to 28.8% or 560.3㎍/㎥ and fine particulate matters (PM2.5) were reduced by up to 28.0% or 350.0㎍/㎥. Then, the concentration of find dust (PM10, PM2.5) was reduced by up to 32.6% or 647.0㎍/㎥ and 32.4% or 401.3㎍/㎥ respectively through reduction in cycle 2 blast section (C-2, β=-5.50, β=-3.30) and up to 30.8% or 732.7㎍/㎥ and 31.0% or 459.3㎍/㎥ respectively through reduction in cycle 3 blast section (C-3, β=5.48, β=-3.51). By referring to standards and regulations related to the installation of vegetation bio-filters in public facilities, this study provided plans on how to set up objective performance evaluation environment. By doing so, it was possible to create monitoring infrastructure more objective than a regular lecture room environment and secure relatively reliable data.