• 제목/요약/키워드: velocity-acceleration feedback

검색결과 61건 처리시간 0.028초

Assessment of velocity-acceleration feedback in optimal control of smart piezoelectric beams

  • Beheshti-Aval, S.B.;Lezgy-Nazargah, M.
    • Smart Structures and Systems
    • /
    • 제6권8호
    • /
    • pp.921-938
    • /
    • 2010
  • Most of studies on control of beams containing piezoelectric sensors and actuators have been based on linear quadratic regulator (LQR) with state feedback or output feedback law. The aim of this study is to develop velocity-acceleration feedback law in the optimal control of smart piezoelectric beams. A new controller which is an optimal control system with velocity-acceleration feedback is presented. In finite element modeling of the beam, the variation of mechanical displacement through the thickness is modeled by a sinus model that ensures inter-laminar continuity of shear stress at the layer interfaces as well as the boundary conditions on the upper and lower surfaces of the beam. In addition to mechanical degrees of freedom, one electric potential degree of freedom is considered for each piezoelectric element layer. The efficiency of this control strategy is evaluated by applying to an aluminum cantilever beam under different loading conditions. Numerical simulations show that this new control scheme is almost as efficient as an optimal control system with state feedback. However, inclusion of the acceleration in the control algorithm increases practical value of a system due to easier and more accurate measurement of accelerations.

가속도귀환방식에 의한 ATMD의 특성 (Properties of ATMD with Acceleration Feedback System)

  • 최민호;강병두;노필성;김재웅
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.242-249
    • /
    • 1995
  • In order to search more efficient structural control algorithm, several closed-loop algorithm are developed. Among those, feedback control algorithm using parameters as displacement velocity, and acceleration has been studied. In this paper, especially the characteristics of accleration feedback is studied as more efficient control algorithm than any others. Furthermore the fact that ATMD with acceleration feedback system further reduce the variance of structural displacement rather than with displacement or velocity feedback system will be examined and proved.

  • PDF

속도 프로파일 기반의 가감속제어를 통한 DC 모터의 토크제어 (Torque Control of DC Motor Using Velocity Profile Based Acceleration/Deceleration Control)

  • 이종연;현창호
    • 한국지능시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.36-41
    • /
    • 2012
  • 본 논문에서는 자동물류운반시스템(AGV)에 사용되는 가감속 제어를 위한 속도 프로파일 기반의 가감속 위치제어를 DC 모터 실험을 통한 토크변화에 대해서 고찰한다. 속도 프로파일을 이용한 모터의 가감속 제어는 모터에 걸리는 부하를 줄임으로써 시스템의 무리한 구동을 방지하고 수명을 연장 시키는 장점을 가지고 있다. 체계적인 설계 구조를 갖는 상태 피드백 제어기를 이용하여 속도 프로파일을 이용한 가감속 제어 기반의 DC 모터의 위치제어와 단순 위치제어를 모의실험을 통하여 비교함으로써 토크 크기를 비교 관찰한다. 또한 CEM-IP-01의 카트 위치 제어 실험을 통하여 이를 검증한다.

건물-지반 시스템에 관한 진동대실험 (1) : 반무한지반위의 구조물 (Shaking table test on soil-structure interaction system (1) : Superstructure with foundation on half-space soil)

  • Lee Sung-Kyung;Masato Motosaka;Min Kyung-Won
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.538-547
    • /
    • 2005
  • This paper presents the shaking table testing method, only using building specimen as an experimental part taking into account the dynamic soil-structure interaction based on the substructure method. The Parmelee's soil stiffness is used as an assumed soil model in here. The proposed methodologies are summarized as: (1) Acceleration feedback method is the one that the shaking table is driven by the motion, corresponding to the acceleration at foundation of the total SSI system. This is found by observing the fed-back accelerations of superstructure and using the interaction force based on the acceleration formulation. (2) Velocity feedback method is the one that the shaking table is driven by the motion, corresponding to the velocity at foundation of the total SSI system. This is found by observing the fed-back accelerations of superstructure and using the interaction force based on the velocity formulation. The applicability of the proposed methodologies to the shaking table test is investigated and experimentally verified in this paper.

  • PDF

자율 주행 차량의 차선 변경을 위한 충격 응답 기반 상태 확장 되먹임 제어 (Extended Feedback Control based on Impulse Response for Lane Change of Autonomous Driving Vehicle)

  • 김상윤;이경수
    • 자동차안전학회지
    • /
    • 제15권3호
    • /
    • pp.17-26
    • /
    • 2023
  • This paper presents extended state feedback control based on impulse response for lane change of autonomous driving vehicle. The triple characteristic root of path tracking system and longitudinal velocity determine feedback gains. We suggest a resemblance of impulse response curve of the system and lane change trajectory of the vehicle. The root affects the duration of lane change and lateral acceleration. The effect of limited lateral acceleration and saturation of steering angle will be analyzed and discussed. Finally, simulation results will show the trajectory of lane change based on impulse response under limitation of lateral acceleration.

Effect of feedback on PID controlled active structures under earthquake excitations

  • Nigdeli, Sinan Melih
    • Earthquakes and Structures
    • /
    • 제6권2호
    • /
    • pp.217-235
    • /
    • 2014
  • In this paper, different feedback control strategies are presented for active seismic control using proportional-integral-derivative (PID) type controllers. The parameters of PID controller are found by using an numerical algorithm considering time delay, maximum allowed control force and time domain analyses of shear buildings under different earthquake excitations. The numerical algorithm scans combinations of different controller parameters such as proportional gain ($K_p$), integral time ($T_i$) and derivative time ($T_d$) in order to minimize a defined response of the structure. The controllers for displacement, velocity and acceleration feedback control strategies are tuned for structures with active control at the first story and all stories. The performance and robustness of different feedback controls on time and frequency responses of structures are evaluated. All feedback controls are generally robust for the changing properties of the structure, but acceleration feedback control is the best one for efficiency and stability of control system.

산업용 재봉기를 위한 BLDC 모터의 제어 (BLDC Motor Control for Industrial Sewing Machine)

  • 이동훈;김일환
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.189-194
    • /
    • 2000
  • In this paper, we present a BLDC Motor control for needle positioning and velocity control in the industrial sewing machine. In the industrial sewing machine, the fast acceleration control is needed, especially for a person who has a skill in operation of sewing machine for more products. And it is also needed to have a less noise and vibration. But the system which is made in a low price has no feedback system for a current control. Therefore we propose the method of velocity pattern that has an acceleration of velocity and Anti-windup algorithm. By the experiment, we confirmed that these manner have a good performance for low noise, low vibration and fast acceleration in the industrial sewing machine.

  • PDF

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai;Pei-Tzu Chang;Yan-Liang Kuo
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.281-295
    • /
    • 2023
  • The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.

동적 지반강성을 갖는 지반-구조물계의 실시간 하이브리드 진동대 실험 (Real-Time Hybrid Shaking Table Test of a Soil-Structure Interaction System with Dynamic Soil Stiffness)

  • 이성경;민경원
    • 한국전산구조공학회논문집
    • /
    • 제20권2호
    • /
    • pp.217-225
    • /
    • 2007
  • 본 연구에서는 건물모델만을 물리적인 실험체로 이용하여 동적 지반강성을 갖는 지반-구조물계의 동적거동을 모사하기 위한 하이브리드 진동대 실험법을 제안하고 이를 실험적으로 검증하였다. 본 연구에서 제안되는 실험방법은 상부구조물과 진동대의 가속도를 계측하여 진동대 제어기로 피드백하고, 전체 지반-구조물계의 동적거동을 묘사하기 위해 요구되는 기초부분의 절대가속도 응답(가속도 피드백 방법) 또는 절대속도 응답(속도 피드백 방법)을 계산하여 진동대를 구동시키는 방법이다. 지반부분을 계산하기 위해서 이론적인 동적지반강성을 제안방법에 따라서 다르게 근사화하여 진동대 제어기에 반영함으로써 실험을 수행하였다. 기초 고정계 모델에 대한 실험으로부터 계측된 응답과 본 논문에서 가정한 지반-구조물 계에 대한 실험으로부터 측정된 응답을 비교하고, 진동대 제어기에 반영한 동적지반강성과 실험데이터를 이용하여 식별된 동적지반강성을 비교함으로써 본 논문에서 제안된 실험방법의 유효성을 검증하였다.

Vibration Suppression Control for Mechanical Transfer Systems by Jerk Reduction

  • Hoshijima, Kohta;Ikeda, Masao
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권6호
    • /
    • pp.614-620
    • /
    • 2007
  • This paper considers vibration suppression of a mechanical transfer system, where the work is connected with the hand flexibly. We adopt the idea of jerk reduction of the hand. From the equation of motion, we first derive a state equation including the jerk and acceleration of the hand, but excluding the displacement and velocity of the work. Then, we design optimal state feedback for a suitable cost function, and show by simulation that jerk reduction of the hand is effective for vibration suppression of the work and improvement of the settling time. Since state feedback including the jerk and acceleration is not practical, we propose a computation method for optimal feedback using displacements and velocities in the state only.