DOI QR코드

DOI QR Code

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai (Department of Civil Engineering, National Central University) ;
  • Pei-Tzu Chang (Department of Civil Engineering, National Central University) ;
  • Yan-Liang Kuo (Department of Civil Engineering, National Central University)
  • Received : 2023.06.30
  • Accepted : 2023.10.15
  • Published : 2023.11.25

Abstract

The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.

Keywords

Acknowledgement

This research was financially supported by the Natural Science and Technology Council (NSTC) of Taiwan under Grant No. MOST 109-2222-E-008 -001 -MY2.

References

  1. Allaoua, S. and Guenfaf, L. (2019), "LQG vibration control effectiveness of an electric active mass damper considering soil-structure interaction", Int. J. Dyn. Control, 7, 185-200. https://doi.org/10.1007/s40435-018-0428-9
  2. Amini, F., Tourani, N. and Ghaderi, P. (2018), "Performance evaluation of phase-controlled semiactive resettable TMD (PCRTMD) with the stiffness retuning ability under strong seismic motions", Struct. Des. Tall Special Build., 27(16), e1502. https://doi.org/10.1002/tal.1502
  3. Aydin, E., Ozturk, B. and Dutkiewicz, M. (2019), "Analysis of efficiency of passive dampers in multistorey buildings", J. Sound Vib., 439(20), 17-28. https://doi.org/10.1016/j.jsv.2018.09.031
  4. Ayorinde, E.O. and Warburton, G.B. (1980), "Minimizing structural vibrations with absorbers", Earthq. Eng. Struct. Dyn., 8, 219-236. https://doi.org/10.1002/eqe.4290080303
  5. Bakre, S.V. and Jangid, R.S. (2007), "Optimum parameters of tuned mass damper for damped main system", Struct. Control Health Monitor., 14, 448-470. https://doi.org/10.1002/stc.166
  6. Casciati, F., Rodellar, J. and Yildirim, U. (2012), "Active and semi-active control of structures-theory and applications: A review of recent advances", J. Intell. Mater. Syst. Struct., 23(11), 1181-1195. https://doi.org/10.1177/1045389X12445029
  7. Chang, J.C.H. and Soong, T.T. (1980), "Structural control using active tuned mass dampers", J. Eng. Mech., 106, 1091-1098. https://doi.org/10.1061/JMCEA3.0002652
  8. Chang, C.C. and Yang, H.T.Y. (1995), "Control of buildings using active tuned mass dampers", J. Eng. Mech., 121, 355-366. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:3(355)
  9. Chen, P.C, Ting, G.C. and Li, C.H. (2020), "A versatile small-scale structural laboratory for novel experimental earthquake engineering", Earthq. Struct., Int. J., 18(3), 337-348. https://doi.org/10.12989/eas.2020.18.3.337
  10. Chen, P.C., Sugiarto, B.J. and Chien, K.Y. (2021), "Performance-based optimization of LQR for active mass damper using symbiotic organisms search", Smart Struct. Syst., Int. J., 27(4), 705-717. https://doi.org/10.12989/sss.2021.27.4.705
  11. Chu, S.Y., Soong, T.T. and Reinhorn, A.M. (2005), Active, Hybrid, and Semi-active Structural Control: A Design and Implementation Handbook, Wiley, New York, USA.
  12. Chung, L.L., Lin, R.C., Soong, T.T. and Reinhorn, A.M. (1989), "Experimental study of active control for MDOF seismic structures", J. Eng. Mech., 115, 1609-1627. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1609)
  13. Chung, L.L., Lai, Y.A., Yang, C.S.W., Lien, K.H. and Wu, L.Y. (2013), "Semi-active tuned mass dampers with phase control", J. Sound Vib., 332, 3610-3625. https://doi.org/10.1016/j.jsv.2013.02.008
  14. Concha, A., Thenozhi, S., Betancourt, R.J. and Gadi, S.K. (2021), "A tuning algorithm for a sliding mode controller of buildings with ATMD", Mech. Syst. Signal Process., 154(1), 107539. https://doi.org/10.1016/j.ymssp.2020.107539
  15. Dai, J., Xu, Z.D., Gai, P.P. and Li, H.W. (2020), "Effect of frequency dependence of large mass ratio viscoelastic tuned mass damper on seismic performance of structures", Soil Dyn. Earthq. Eng., 130, 105998. https://doi.org/10.1016/j.soildyn.2019.105998
  16. Den Hartog, J.P. (1956), Mechanical Vibrations, McGraw-Hill, New York, USA.
  17. Ferreira, F., Moutinho, C., Cunha, A. and Caetano, E. (2018), "Proposal of optimum tuning of semiactive TMDs used to reduce harmonic vibrations based on phase control strategy", Struct. Control Health Monitor., 25, e2131. https://doi.org/10.1002/stc.2131
  18. Frahm, H. (1911), Device for Damping Vibration of Bodies; US. Patent No. 989958.
  19. Ghosh, A. and Basu, B. (2005), "A closed-form optimal tuning criterion for TMD in damped structures", Struct. Control Health Monitor., 14, 681-692. https://doi.org/10.1002/stc.176
  20. Guclu, R. and Yazici, H. (2008), "Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers", J. Sound Vib., 318, 36-49. https://doi.org/10.1016/j.jsv.2008.03.058
  21. Gutierrez Soto, M. and Adeli, H. (2013), "Tuned mass dampers", Arch. Computat. Methods Eng., 20, 419-431. https://doi.org/10.1007/s11831-013-9091-7
  22. Ikeda, Y. (2009), "Active and semi-active vibration control of buildings in Japan-Practical applications and verification", Struct. Control Health Monitor., 16, 703-723. https://doi.org/10.1002/stc.315
  23. Kareem, A., Kijewski, T. and Tamura, T. (1999), "Mitigation of motions of tall buildings with specific examples of recent applications", Wind Struct., Int. J., 2(3), 201-251. https://doi.org/10.12989/was.2020.2.3.201
  24. Lago, A., Trabucco, D. and Wood, A. (2018), Damping Technologies for Tall Buildings: Theory, Design Guidance and Case Studies, Butterworth-Heinemann, Oxford, UK.
  25. Lai, Y.A., Chung, L.L., Yang, C.S.W. and Wu, L.Y. (2018), "Semi-active phase control of tuned mass dampers for translational and torsional vibration mitigation of structures", Struct. Control Health Monitor., 25, e2191. https://doi.org/10.1002/stc.2191
  26. Lai, Y.A., Luo, W.C., Huang, S.K., Yang, C.Y. and Chang, C.M. (2022), "Seismic control of structure with phase control active tuned mass damper", Struct. Control Health Monitor., 29(7), e2946. https://doi.org/10.1002/stc.2946
  27. Levine, W.S. and Athans, M. (1970), "On the determination of the optimal constant output feedback gains for linear multivariable systems", IEEE Transact. Automat. Control, 15, 44-48. https://doi.org/10.1109/TAC.1970.1099363
  28. Lewis, F.L., Vrabie, D. and Syrmos, V.L. (2012), Optimal Control, Wiley, New York, USA.
  29. Li, C. and Liu, Y. (2002), "Active multiple tuned mass dampers for structures under the ground acceleration", Earthq. Eng. Struct. Dyn., 31, 1041-1052. https://doi.org/10.1002/eqe.136
  30. Li, C., Liu, Y. and Wang, Z. (2003), "Active multiple tuned mass dampers: A new control strategy", J. Struct. Eng., 129(7), 972-977. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(972)
  31. Lin, C.C., Lu, K.H. and Chung, L.L. (1996), "Optimal discrete-time structural control using direct output feedback", Eng. Struct., 18, 472-480. https://doi.org/10.1016/0141-0296(95)00122-0
  32. Loh, C.H. and Chao, C.H. (1996), "Effectiveness of active tuned mass damper and seismic isolation on vibration control of multi-storey building", J. Sound Vib., 193(4), 773-792. https://doi.org/10.1006/jsvi.1996.0315
  33. Mitchell, R., Kim, Y., El-Korchi, T. and Cha, Y.J. (2012), "Wavelet-neuro-fuzzy control of hybrid building-active tuned mass damper system under seismic excitations", J. Vib. Control, 19, 1881-1894. https://doi.org/10.1177/1077546312450730
  34. Moerder, D.D. and Calise, A.J. (1985), "Convergence of a numerical algorithm for calculating optimal output feedback gains", IEEE Transact. Automat. Control, 30, 900-903. https://doi.org/10.1109/TAC.1985.1104073
  35. Moutinho, C. (2015), "Testing a simple control law to reduce broadband frequency harmonic vibrations using semi-active tuned mass dampers", Smart Mater. Struct., 24, 055007. https://doi.org/10.1088/0964-1726/24/5/055007
  36. Murudi, M.M. and Mane, S.M. (2004), "Seismic effectiveness of tuned mass damper (TMD) for different ground motion parameters", In: World Conference on Earthquake Engineering, Vancouver, B.C., Canada, Paper No. 2325.
  37. Nagarajaiah, S. (2009), "Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, hilbert transform, and short-term fourier transform", Struct. Control Health Monitor., 16(7-8), 800-841. https://doi.org/10.1002/stc.349
  38. Nagishima, I. (2001), "Optimal displacement feedback control law for active tuned mass damper", Earthq. Eng. Struct. Dyn., 30, 1221-1242. https://doi.org/10.1002/eqe.60
  39. Nishimura, I., Kobori, T., Sakamoto, M., Koshika, N., Sasaki, K. and Ohrui, S. (1992), "Active tuned mass damper", Smart Mater. Struct., 1, 306-311. https://doi.org/10.1088/0964-1726/1/4/005
  40. Paul, S. and Yu, W. (2018), "A method for bidirectional active control of structures", J. Vib. Control, 24(15), 3400-3417. https://doi.org/10.1177/1077546317705556
  41. Pinkaew, T., Lukkunaprasit, P. and Chatupote, P. (2003), "Seismic effectiveness of tuned mass dampers for damage reduction of structures", Eng. Struct., 25(1), 39-46. https://doi.org/10.1016/S0141-0296(02)00115-3
  42. Rasouli, S.K. and Yahyai, M. (2002), "Control of response of structures with passive and active tuned mass dampers", Struct. Des. Tall Build., 11, 1-14. https://doi.org/10.1002/tal.181
  43. Saaed, T.E., Nikolakopoulos, G., Jonasson, J.E. and Hedlund, H. (2013), "A state-of-the-art review of structural control systems", J. Vib. Control, 21, 919-937. https://doi.org/10.1177/1077546313478294
  44. Sadek, F., Mohraz, B., Taylor, A.W. and Chung, R.M. (1997), "A method of estimating the parameters of mass dampers for seismic applications", Earthq. Eng. Struct. Dyn., 26, 617-635. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z
  45. Samali, B and Al-Dawod, M. (2003), "Performance of a fives-torey benchmark model using an active tuned mass damper and a fuzzy controller", Eng. Struct., 25, 1597-1610. https://doi.org/10.1016/S0141-0296(03)00132-9
  46. Semblat, J.F., and Pecker, A. (2009), Waves and Vibrations in Soils: Earthquakes, Traffic, Shocks, Construction Works. IUSS Press, Rome, Italy.
  47. Sone, T., Ogino, K., Kamoshita, N., Muto, K., Ide, Y., Murata, K., Hamaguchi, H. and Yamamoto, M. (2019), "Experimental verification of a tuned mass damper system with two-phase support mechanism", Japan Architect. Review, 2(3), 251-388. https://doi.org/10.1002/2475-8876.12095
  48. Soong, T.T. and Manolis, G.D. (1987), "Active structures", J. Struct. Eng., 113, 2290-2301. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:11(2290)
  49. Soong, T.T. and Dargush, G.F. (1997), Passive Energy Dissipation Systems in Structural Engineering, Wiley, New York, USA.
  50. Spencer, B.F. Jr. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129, 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
  51. Spencer, B.F. Jr., Suhardjo, J. and Sain, M.K. (1994), "Frequency domain optimal control strategies for aseismic protection", J. Eng. Mech., 120, 135-158. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:1(135)
  52. Spencer, B.F. Jr., Dyke, S.J. and Deoskar, H.S. (1998), "Benchmark problems in structural control: part I-Active Mass Driver system", Earthq. Eng. Struct. Dyn., 27(11), 1127-1139. https://doi.org/10.1002/(SICI)1096-9845(1998110)27:11<1127::AID-EQE774>3.0.CO;2-F
  53. Tigli, O.F. (2012), "Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads", J. Sound Vib., 331, 3035-3049. https://doi.org/10.1016/j.jsv.2012.02.017
  54. Tsai, H.C. and Lin, G.C. (1993), "Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems", Earthq. Eng. Struct. Dyn., 22, 957-973. https://doi.org/10.1002/eqe.4290221104
  55. Warburton, G.B. (1982), "Optimum absorber parameters for various combinations of response and excitation parameters", Earthq. Eng. Struct. Dyn., 10, 381-401. https://doi.org/10.1002/eqe.4290100304
  56. Yang, J.N. (1987), "New optimal control algorithms for structural control", J. Eng. Mech., 113, 1369-1386. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:9(1369)
  57. Yang, D.H., Shin, J.H., Lee, H.W., Kim, S.K. and Kwak, M.K. (2017), "Active vibration control of structure by active mass damper and multi-modal negative acceleration feedback control algorithm", J. Sound Vib., 392, 18-30. https://doi.org/10.1016/j.jsv.2016.12.036
  58. Younespour, A. and Ghaffarzadeh, H. (2015), "Structural active vibration control using active mass damper by block pulse functions", J. Vib. Control, 21, 2787-2795. https://doi.org/10.1177/1077546313519285