• Title/Summary/Keyword: velocity stack

Search Result 90, Processing Time 0.031 seconds

Iterative Least-Squares Method for Velocity Stack Inversion - Part A: IRLS method (속도중합역산을 위한 반복적 최소자승법 - Part A: IRLS 방법)

  • Ji Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.163-169
    • /
    • 2005
  • Recently, the velocity stack domain is having an attention as a very useful domain for various processing in seismic data processing. In order to be used in many applications, the velocity stack should be obtained through an inversion method and the used inversion should have properties like the robustness to noise and the parsimony of velocity stack result. Iteratively Reweighted Least-Squares (IRLS) method is the one of the inversion methods that have such properties. This paper describes the theoretical background, implementation of the method, and examines the characteristics and limits of the IRLS method.

Effects of the Methanol Concentration, Wind Velocity and Stack Temperature on the performance of Direct Methanol Fuel Cell (직접 메탄올 연료 전지의 성능에 대한 메탄올 농도, 풍속 및 스택 온도의 영향)

  • Kim, Yong-Ha;Kim, Seok-Il
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.2
    • /
    • pp.21-26
    • /
    • 2007
  • DMFC(Direct Methanol Fuel Cell) has been considered as an attractive option to produce electric power in many application. In this study, in order to estimate the effects of the methanol concentration, wind velocity and temperature on the performance of DMFC, a physical prototype of DMFC was designed and manufactured, and the stack voltage of DMFC was measured during the operation of DMFC. Expecially, the experimental results showed that a low stack temperature, a low wind velocity and an excess methanol concentration lead to the increase of the time to reach the maximum stack voltage.

  • PDF

Two-dimension Numerical Simulation of Stack Flue Gas Dispersion

  • Park, Young-Koo;Wu, Shi-Chang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2012
  • A numerical simulation of plume from a stack into atmospheric cross flow is investigated using a two-dimension model. The simulation is based on the ${\kappa}{\sim}{\varepsilon}$ turbulence model and a finite volume method. In this paper, it mostly researches how the wind velocity affects the flue gas diffusion from an 80 m high stack. Wind velocity is one of the most important factors for flue gas diffusion. The plume shape size, the injection height, the NO pollutant distribution and the concentration at the near ground are presented with two kinds of wind velocities, 1 m/s and 5 m/s. It is found that large wind velocity is better for flue gas diffusion, it generates less downwash. Although the rise height is lower, the pollutant dilutes faster and more sufficient.

A Study on the Limit Capacity Calculation for Thermal plant based on Air Pollution Control (대기오염에 따른 화력발전소의 한계용량산전에 관한 연구)

  • Yim Han Suck
    • 전기의세계
    • /
    • v.26 no.2
    • /
    • pp.95-98
    • /
    • 1977
  • Commercially available fuel oil for power plant contains relatively much sulphur, which means accordingly high content sulphur deoxide in exhaust gas. Sulphur deoxide has been identified as the worst-pollutant caused by thermal power generation. This paper primarily deals with the stack gas diffusion effects of various parameters, namely vertical stability, wind velocity, exhaust gas velocity, stack height, etc., on the ground concentration. thereof the relation between stack height and maximum plant capacity is analyzed from the standpoint of air pollution prevention. The limit capacity is calculated by means of mean concentration introducing Mead and Lowry coefficient respectively.

  • PDF

A Method of Velocity Compensation of Target for the Naval Radar System (함정용 레이더의 표적 속도 보상 방법)

  • Cho, Won-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.508-515
    • /
    • 2009
  • In the naval environment, a naval radar has many obstructions of velocity, such as rotation and velocity of ship. In the common situation, the rotations such as roll, pitch and yaw don't influence the velocity of the target. But because the naval radar is located on the top of the mast, there is some influence to the target velocity. When we trace the target, radar controller doesn't use hits whose doppler banks are zero. So, we must compensate the target velocity for the velocity error. This paper suggests a method of velocity compensation of target by the velocity vector and how to apply to the stack beam radar if we don't know the height of the target.

Numerical study on the thermal performance characteristics of the stack system for FCEV (연료전지 자동차용 스택 시스템의 열적 성능 특성에 관한 수치적 연구)

  • Lee, Ho-Seong;Lee, Moo-Yeon;Won, Jong-Phil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3708-3713
    • /
    • 2015
  • The objective of this study is to numerically investigate the heat transfer rate for evaluating the thermal performances of the stack thermal system using the commercial software. In order to perform this, the cooling performances of the stack system for fuel cell electric vehicle were tested under both driving road conditions including the general driving road and uphill driving road and operating conditions with and without of the air conditioning system. The heat transfer rate of the stack radiator for the stack system was increased with the increase of the inlet air flow velocity. The heat transfer rate of the stack radiator increased by 105.3% at the coolant flow rate of 20 l/min and 221.3% at the coolant flow rate of 120 l/min with the increase of the air flow velocity from 2 m/s to 10 m/s. $9.45^{\circ}C$ of inlet coolant temperature of the stack radiator at the severe driving condition of the slope of 8% and velocity of 50 km/h showed higher 85.3% than $5.1^{\circ}C$ of inlet coolant temperature at the general driving condition of the slope of 0% and velocity of 120 km/h. In addition, as the fuel cell electric vehicle with the air conditioning system operation was driving under severe uphill driving condition, the radiator coolant temperature for a stable stack operation could be exceeded over $70^{\circ}C$.

Iterative Least-Squares Method for Velocity Stack Inversion - Part B: CGG Method (속도중합역산을 위한 반복적 최소자승법 - Part B: CGG 방법)

  • Ji Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.170-176
    • /
    • 2005
  • Recently the velocity stack inversion is having many attentions as an useful way to perform various seismic data processing. In order to be used in various seismic data processing, the inversion method used should have properties such as robustness to noise and parsimony of the velocity stack result. The IRLS (Iteratively Reweighted Least-Squares) method that minimizes ${L_1}-norm$ is the one used mostly. This paper introduce another method, CGG (Conjugate Guided Gradient) method, which can be used to achieve the same goal as the IRLS method does. The CGG method is a modified CG (Conjugate Gradient) method that minimizes ${L_1}-norm$. This paper explains the CGG method and compares the result of it with the one of IRSL methods. Testing on synthetic and real data demonstrates that CGG method can be used as an inversion method f3r minimizing various residual/model norms like IRLS methods.

A Study on the Thermal Phenomena and Stack Effect of Nude Elevator Shaft of High Rise Building that used CFD (CFD를 이용한 초고층빌딩 누드 엘리베이터의 온열 및 연돌현상에 관한 연구)

  • Park, Jung-Han
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1059-1064
    • /
    • 2008
  • The present study is to reduce the thermal phenomena and stack effect of nude elevator of the high-rise building used CFD simulation. Since many High-rise buildings used the curtain-wall glass, thermal phenomena and stack effect can easily occur at hot and cold season, respectively. The simulation has been conducted and verified for the effects of the amount of suppling air to the environment of the inside nude elevator shaft. The results of simulations show that the problems due to the thermal and stack effect will be reduced by enforced ventilation or natural ventilation and those will be presented by temperature and velocity profiles and pressure differences.

  • PDF

Effect of the a floor plan of lobby floor for the Stack Effect in a High-rise Building (고층건물에서 로비층의 평면형태가 연돌효과에 미치는 영향)

  • Lee, June-Ho;Lim, Hyun-Woo;Seo, Jung-Min;Lee, Joong-Hoon;Song, Doo-Sam
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.293-299
    • /
    • 2009
  • Many kinds of problems by stack effect occur in the high-rise buildings that have the simple plan on the first floor designed only by an external wall and an E/V shaft wall. Therefore, some buildings in the foreign countries has made the additional inside walls between lobby and E/V hall as a countermeasure on stack effect. An additional wall in the lobby is very useful countermeasure on stack problems because lobby is a main airflow path in the building. Decreasing effect on stack problems by an additional wall of lobby is reported in this study. An ordinary office building that has a simple lobby plan is simulated and measured in this study. The results show that characteristics on stack effect are changed by methods of applying additional walls and that alternations of countermeasures which building conditions like the kinds of problems and the problem's velocity etc. are considered are very important.

  • PDF

Analytical Modeling and Simulation for Dual Metal Gate Stack Architecture (DMGSA) Cylindrical/Surrounded Gate MOSFET

  • Ghosh, Pujarini;Haldar, Subhasis;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.458-466
    • /
    • 2012
  • A Dual metal gate stack cylindrical/ surrounded gate MOSFET (DMGSA CGT/SGT MOSFET) has been proposed and an analytical model has been developed to examine the impact of this structure in suppressing short channel effects and in enhancing the device performance. It is demonstrated that incorporation of gate stack along with dual metal gate architecture results in improvement in short channel immunity. It is also examined that for DMGSA CGT/SGT the minimum surface potential in the channel reduces, resulting increase in electron velocity and thereby improving the carrier transport efficiency. Furthermore, the device has been analyzed at different bias point for both single material gate stack architecture (SMGSA) and dual material gate stack architecture (DMGSA) and found that DMGSA has superior characteristics as compared to SMGSA devices. The analytical results obtained from the proposed model agree well with the simulated results obtained from 3D ATLAS Device simulator.