• Title/Summary/Keyword: velocity integration method

Search Result 189, Processing Time 0.025 seconds

Flowrate Integration Errors of Multi-path Ultrasonic Flowmeter using Weighting Factors (가중계수에 의한 다회선 초음파유량계의 유량적분오차)

  • Lee, Ho-June;Hwang, Shang-Yoon;Kim, Kyoung-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.7-12
    • /
    • 2004
  • Multi-path ultrasonic flowrate measuring technology is being received much attentions from a variety of industrial fields to exactly measure the flowrate. Multi-path ultrasonic flowmeter has much advantage since it has no moving parts and little pressure loss. It offers good accuracy, repeatability, linearity and turn-down ratio can be over 1:50. The present study investigates flowrate integration errors using weighting factors. A theoretical flow model uses power law to describe a fully developed velocity profiles and wall roughness is changed. Gaussian, Chebyshev, and Tailor methods are used to integrate line-average velocities. The obtained results show that Chebyshev method in 2, 4-path arrangement and Gaussian method in 3, 5-path arrangement are not affected for wall roughness changes.

Uncertainty Analysis for the Multi-path Ultrasonic Flowmeter UR- 1000 with Dry Calibration (간접 교정에 의한 다회선 초음파유량계 UR-1000 불확도 분석)

  • Hwang, Shang-Yoon;Park, Sung-Ha;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.378-386
    • /
    • 2002
  • Multi-path ultrasonic Sow measurement system uncertainty is determined by assigning an expected error of each component of flow measurement and then defining the total flow measurement uncertainty as square root of the sum of squared values of the individual error. Sources of uncertainty for flow measurement are geometry, transit time and velocity profile integration uncertainty. A theoretical uncertainty model for multi-path ultrasonic transit time flowmeter configured with parallel 5 chords, is derived from and calculated by dry calibration method.

  • PDF

Optimal Design of flat rolling about Lead Wire for Productivity Improvement (리드용 와이어의 생산성 향상을 위한 평압연 최적설계)

  • Park, Chang Hyung;Kim, Jin Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.29-34
    • /
    • 2017
  • In this paper, we report a method of improving the productivity of lead wire fabricated through the rolling process by increasing its linear velocity. The most important point to consider when raising the linear velocity is that the original specifications must still be adhered to. In other words, the dimensional tolerance must be satisfied when increasing the linear velocity of the wire without causing cracks. However, if the linear velocity of the wire is increased, the degree of reduction must also be increased, which causes more damage to the wire and increases the load on its surface. Therefore, we studied a three step rolling process which can satisfy the specifications of the wire produced through the two step rolling process and improve the productivity. In this study, only the roll gap of the three-stage rolling roller is assumed to be a variable, while the other conditions are the same as the field conditions. In addition, through the PIANO (Process Integration, Design and Optimization) tool, the (optimum?) surface roughness and maximum stress are maintained.

Measurement of velocity Pronto in Liquid Metal Flow Using Electromagnetic Tomography (전자기 토모그래피를 이용한 액체 금속 속도장 측정)

  • Ahn Yeh-Chan;Kim Moo Hwan;Choi Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1271-1278
    • /
    • 2004
  • In order to measure non-intrusively velocity profile in liquid metal flow, a modified electromagnetic flowmeter was designed, which was based on electromagnetic tomography technique. Under the assumption that flow is fully-developed, axisymmetric and rectilinear, the velocity profile was reconstructed after the flowmeter equation, the first kind of Fredholm integration equation, was linearized. In reconstruction process Tikhonov regularization method with regularization parameter was used. The reconstructed velocity profile had the nearly same as turbulent flow profile which was approximately represented as log law. In addition, flowmeter output fur a fixed magnet rotation angle was linearly proportional to flow rate. When magnet rotation angle was 54$^{\circ}$, axisymmetric weight function was nearly uniform so that the flowmeter gives a constant signal for any fully-developed, axisymmetric and rectilinear profile with a constant flow rate.

Flow Characteristics for the Variation of Radius of Curvature in Open Channel Bends

  • Yoon, Sei-Eul;Lee, Jong-Tae
    • Korean Journal of Hydrosciences
    • /
    • v.3
    • /
    • pp.45-59
    • /
    • 1992
  • The flow characteristics varying with rate of the radius of curvature to width (Rc/B) in open channel bends are investigated with a simplified numerical model. Secondary flow velocity and transverise bed slope are formulated from the equations of momentum and force balance analysis, respectively. The conservation equations of mass and streamwise momentum are simplified by depth integration and its solution could be obtained from the explicit finite difference method. Three sets of computer simulation are executed. The rates of Rc/B adopted in simulations are 2.7, 5.4 and 8.1. The terms analyzed in this paper secondary flow velocity, streamwise velocity, the path of maximum steamwise velocity, deviation angle, and mass-shift velocity.

  • PDF

Measurement of Velocity Profile in Liquid Metal Flow Using Electromagnetic Tomography (전자기 토모그래피를 이용한 액체 금속 속도장 측정)

  • Choi, Sang-Ho;Ahn, Yeh-Chan;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1749-1754
    • /
    • 2004
  • In order to measure non-intrusively velocity profile in liquid metal flow, a modified electromagnetic flowmeter was designed, which was based on electromagnetic tomography technique. Under the assumption that flow is fully-developed, axisymmetric and rectilinear, the velocity profile was reconstructed after the flowmeter equation, the first kind of Fredholm integration equation, was linearized. In reconstruction process Tikhonov regularization method with regularization parameter was used. The reconstructed velocity profile had the nearly same as turbulent flow profile which was approximately represented as log law. In addition, flowmeter output for a fixed magnet rotation angle was linearly proportional to flow rate. When magnet rotation angle was $54^{\circ}$, axisymmetric weight function was nearly uniform so that the flowmeter gives a constant signal for any fully-developed, axisymmetric and rectilinear profile with a constant flow rate.

  • PDF

Evaluations on a Pressure-Field Calculation Method using PIV Synthetic Image (가상영상 PIV기반 압력장 계산법 평가)

  • Lee, Chang Je;Cho, Gyong Rae;Kim, Uei Kan;Kim, Dong Hyuk;Doh, Deog Hee
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.2
    • /
    • pp.46-51
    • /
    • 2016
  • In this study, a Masked Omni-Directional Integration(MODI) method for pressure calculation is proposed using the Particle Image Velocimetry (PIV) data. To obtain the velocity field, the Affine PIV method was adopted. Synthetic images were generated for a solid body rotation. Calculation on the pressure was based on the Navier-Stokes equation. The results obtained by the MODI were compared with those obtained by theoretical pressure and by the Omni-Directional Integration(ODI) method. It was shown that the minimum error by the proposed MODI method was attained when the mask size was 1.

The analysis and optimization of dual armor plate considering EQPS (EQPS를 이용한 복합장갑의 해석 및 최적설계)

  • 박명수;유정훈;정동택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.111-118
    • /
    • 2004
  • For the precise analysis of high velocity impact problem though FEM with element erosive method, the adequate mesh size and critical equivalent plastic strain(EQPS) is chosen prior to the simulation. In this research, it is strongly required from a standpoint that critical EQPS is used to decide whether perforation occurs or not. The optimization of dual armor plate consisting of 4340 steel and 2024 aluminium against a die steel sphere with high-velocity has been suggested using Lagrangian explicit time-integration code, NET2D. The response surface method based on the design of experiment is utilized for the size optimization. The optimized thickness of each layer, in which perforation does not occur, the strength of multi-layer is maximized and total weight is minimized, is obtained at a constant velocity of a pellet with a designated total thickness.

  • PDF

Multi-Point Contact Analysis of Two Bodies in Plane (평면에서의 임의 형상을 갖는 물체의 다점 접촉 해석)

  • Jeon, Gyeong-Jin;Park, Su-Jin;Son, Jeong-Hyeon;Yu, Wan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1631-1637
    • /
    • 2002
  • This paper presents a method for calculating contact force between bodies on plane. At each integration time step, the proposed method finds expected contact point on their outlines and then calculates penetration, velocity of penetration and contact force. This paper adopts continuous analysis method and multi-point contact method to calculate contact force. To obtain the accurate expected contact point on their outlines, a new algorithm is developed. The accuracy of the proposed algorithm is demonstrated by comparing the numerical results of the proposed method and DADS.

Low-Velocity Impact Response Analysis of Composite Laminates Considering Higher Order Shear Deformation and Large Deflection (고차전단변형과 대처짐을 고려한 복합적층판의 저속충격거동 해석)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2982-2994
    • /
    • 1993
  • Low-velocity impact responses of composite laminates are investigated using the finite element method based on various theories. In two-dimensional nonlinear analysis, a displacement field considering higher order shear deformation and large deflection of the laminate is assumed and a finite element formulation is developed using a C$^{o}$-continuous 9-node plate element. Also, three-dimensional linear analysis based on the infinitesimal strain-displacement assumptions is performed using 8-node brick elements with incompatible modes. A modified Hertzian contact law is incorporated into the finite element program to evaluate the impact force. In the time integration, the Newmark constant acceleration algorithm is used in conjuction with successive iterations within each time step. Numerical results from static analysis as well as the impact response analysis are presented including impact force histories, deflections, strains in the laminate. Impact responses according to two typical low-velocity impact conditions are compared each other.