• 제목/요약/키워드: velocity differential

검색결과 429건 처리시간 0.031초

파킨슨성 완서증의 손가락 마주치기 속도와 크기에 대한 약물과 뇌심부자극의 효과 (Effects of Medication and Deep Brain Stimulation on the Finger-tapping Speed and Amplitude of Parkinsonian Bradykinesia)

  • 김지원;권유리;박상훈;엄광문;고성범;장지완;이혜미
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권1호
    • /
    • pp.47-52
    • /
    • 2012
  • The purpose of this study is to investigate whether medication and deep brain stimulation (DBS) have differential effects on the speed and amplitude of bradykinesia in patients with Parkinson's disease (PD). Five PD patients with implanted DBS electrodes (age: $60.6{\pm}7.4yrs$, H&Y stage: $3.1{\pm}0.2$) participated in this study. FT (finger tapping) movement was measured using a gyrosensor system in four treatment conditions: Med (Medication)-off/DBS-off, Med-off/DBS-on, Med-on/DBS-off and Med-on/DBS-on. Quantitative measures representing average speed and amplitude of FT movement included root-mean-squared (RMS) angular velocity and RMS angle. One-way repeated measures ANOVA showed that RMS angular velocity of Med-on/DBS-on was significantly greater than those of Med-off/DBS-off and Med-off/DBS-on (p < 0.01) whereas RMS angle was not different among conditions (p = 0.06). Two way repeated measures ANOVA showed that only medication improved RMS angular velocity (p < 0.01), whereas both medication and DBS had no significant effect on RMS angle (p > 0.02). Effect size of RMS angular velocity was greater than that of RMS angle in both medication and DBS. This suggests that medication and DBS have differential effects on FT bradykinesia and velocity and amplitude impairments may be associated with different functional aspects in PD.

Dynamic analysis of laminated nanocomposite pipes under the effect of turbulent in viscoelastic medium

  • Ghaitani, M.M.;Majidian, A.;Shokri, V.
    • Wind and Structures
    • /
    • 제30권2호
    • /
    • pp.133-140
    • /
    • 2020
  • In this paper, critical fluid velocity and frequency of laminated pipe conveying fluid are presented. Each layer of the pipe is reinforced by functionally graded carbon nanotubes (FG-CNTs). The internal fluid is assumed turbulent and the induced forces are calculated by momentum equations. The pipe is resting on viscoelastic foundation with spring, shear and damping constants. The motion equations are derived based on classical shell theory and energy method. Differential quadrature method (DQM) is used for solution and obtaining the critical fluid velocity. The effects of volume percent and distribution of CNT, boundary condition, lamina layer number, length to radius ration of pipe, viscoelastic medium and fluid velocity are shown on the critical fluid velocity. Results show that with increasing the lamina layer number, the critical fluid velocity increases.

Strength prediction of steady laminar fluid with normal velocity distribution: A simplified truncation technique

  • Mohamed A. Khadimallah;Muzamal Hussain;Elimam Ali;Abdelouahed Tounsi
    • Advances in concrete construction
    • /
    • 제15권5호
    • /
    • pp.313-319
    • /
    • 2023
  • In this paper, the analytic solution has been found by using truncation approach. With the help of suitable substitution, different physical parameters are yielded in their non-dimensional form. The governing boundary layer partial differential equations are reduced to a set of ordinary ones by using appropriate similarity transformations. The velocity profile across the domain have also been taken into account. The effect normal velocity profiles buoyancy parameter, slip parameter, shrinking parameter, Casson fluid parameter on the heat profile. It is found that the normal velocity profiles rise with the buoyancy parameter and for the slip parameter. It is observed that the normal velocity profile decreases with the increase of shrinking parameter. The reverse behiour is found for the Casson fluid parameter. The results are numerically computed, analyzed and discussed. For the efficiency of present model, the results are compared with earlier investigations.

Modeling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권8호
    • /
    • pp.1165-1173
    • /
    • 2001
  • This paper deals with dynamic analysis of Pipeline Inspection Gauge (PIG) flow control in natural gas pipelines. The dynamic behaviour of PIG depends on the pressure differential generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. To analyze dynamic behaviour characteristics (e.g. gas flow, the PIG position and velocity) mathematical models are derived. Tow types of nonlinear hyperbolic partial differential equations are developed for unsteady flow analysis of the PIG driving and expelled gas. Also, a non-homogeneous differential equation for dynamic analysis of the PIG is given. The nonlinear equations are solved by method of characteristics (MOC) with a regular rectangular grid under appropriate initial and boundary conditions. Runge-Kutta method is used for solving the steady flow equations to get the initial flow values and for solving the dynamic equation of the PIG. The upstream and downstream regions are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. Simulation is performed with a pipeline segment in the Korea gas corporation (KOGAS) low pressure system. Ueijungboo-Sangye line. The simulation results show that the derived mathematical models and the proposed computational scheme are effective for estimating the position and velocity of the PIG with a given operational condition of pipeline.

  • PDF

Guided waves of porous FG nanoplates with four edges clamped

  • Zhao, Jing-Lei;She, Gui-Lin;Wu, Fei;Yuan, Shu-Jin;Bai, Ru-Qing;Pu, Hua-Yan;Wang, Shilong;Luo, Jun
    • Advances in nano research
    • /
    • 제13권5호
    • /
    • pp.465-474
    • /
    • 2022
  • Based on the nonlocal strain gradient (NSG) theory and considering the influence of moment of inertia, the governing equations of motion of porous functionally graded (FG) nanoplates with four edges clamped are established; The Galerkin method is applied to eliminate the spatial variables of the partial differential equation, and the partial differential governing equation is transformed into an ordinary differential equation with time variables. By satisfying the boundary conditions and solving the characteristic equation, the dispersion relations of the porous FG strain gradient nanoplates with four edges fixed are obtained. It is found that when the wave number is very small, the influences of nonlocal parameters and strain gradient parameters on the dispersion relation is very small. However, when the wave number is large, it has a great influence on the group velocity and phase velocity. The nonlocal parameter represents the effect of stiffness softening, and the strain gradient parameter represents the effect of stiffness strengthening. In addition, we also study the influence of power law index parameter and porosity on guided wave propagation.

확률경로 기반의 교통류 분석 방법론 (A new approach on Traffic Flow model using Random Trajectory Theory)

  • PARK, Young Wook
    • 대한교통학회지
    • /
    • 제20권5호
    • /
    • pp.67-79
    • /
    • 2002
  • 교통량, 교통밀도, 교통류 속도 등, 교통류 변수에 대한 현재까지의 불확실한 정의와 연속적 파동방정식의 거시적 교통류 해석상의 문제점을 지적하고 이를 개선하기 위해 교통류 변수들에 대한 새로운 확률적 정의를 제시하고 이들의 성격을 규명하였다. 이러한 새로운 교통류 변수들에 대한 새로운 정의를 바탕으로 미시적 운전자 행동을 세밀하게 수용할 수 있고 많은 교통환경에서 연속적 파동 방정식을 대체하여 교통류 변수들과 통행시간을 예측할 수 있는 미분방정식 체계를 확률 미분방적식을 이용하여 도출하였다. 도출된 미분 방정식을 단일 차량의 시공 괘적에 적용해 보았다.

수학적 해석 방법에 의한 액체저장탱크의 액동압 거동 해석 (Hydrodynamic Behavior Analysis of Vertical-Cylindrical Liquid-Storge Tanks by Mathematically Analytic Method)

  • 박종률;오택열
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.487-496
    • /
    • 2002
  • Hydrodynamic behavior and response of vertical-cylindrical liquid-storage tank is considered. The equation of the liquid motion is shown by Laplace's differential equation with the fluid velocity potential. The solution of the Laplace's differential equation of the liquid motion is expressed with the modified Bessel functions. Only rigid tank is studied. The equivalent masses and heights for the tank contents are presented for engineering design model.

STEADY NONLINEAR HYDROMAGNETIC FLOW OVER A STRETCHING SHEET WITH VARIABLE THICKNESS AND VARIABLE SURFACE TEMPERATURE

  • Anjali Devi, S.P.;Prakash, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권3호
    • /
    • pp.245-256
    • /
    • 2014
  • This work is focused on the boundary layer and heat transfer characteristics of hydromagnetic flow over a stretching sheet with variable thickness. Steady, two dimensional, nonlinear, laminar flow of an incompressible, viscous and electrically conducting fluid over a stretching sheet with variable thickness and power law velocity in the presence of variable magnetic field and variable temperature is considered. Governing equations of the problem are converted into ordinary differential equations utilizing similarity transformations. The resulting non-linear differential equations are solved numerically by utilizing Nachtsheim-Swigert shooting iterative scheme for satisfaction of asymptotic boundary conditions along with fourth order Runge-Kutta integration method. Numerical computations are carried out for various values of the physical parameters and the effects over the velocity and temperature are analyzed. Numerical values of dimensionless skin friction coefficient and non-dimensional rate of heat transfer are also obtained.

A HEART MODEL IN THE CIRCULATORY SYSTEM

  • Jung, E.;Kim, Y.;Lee, W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.266-268
    • /
    • 2011
  • We present a mathematical model of left heart governed by the partial differential equations. This heart is coupled with a lumped model of the whole circulatory system governed by the ordinary differential equations. The immersed boundary method is used to investigate the intracardiac blood flow and the cardiac valve motions of the normal circulation in humans. We investigate the intraventricular velocity field and the velocity curves over the mitral ring and across outflow tract. The pressure and flow are also measured in the left and right heart and the systemic and pulmonary arteries. The simulation results are comparable to the existing measurements.

  • PDF

팰리배열 월쉬함수를 이용한 정속 이동 금속판의 열교환 최적제어에 관한 연구 (A Study on Optimal Control of Heat Exchange of Thin Metal Moving at Constant Velocity Via the Paley Order of Walsh Functions)

  • 김태훈;이명규;안두수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권11호
    • /
    • pp.514-521
    • /
    • 2001
  • This paper uses the distributed heating thin metal moving at constant velocity which are modeled as distributed parameter systems, and applies the Paley order of Walsh functions to high order partial differential equations and matrix partial differential equations. This thesis presents a new algorithm which usefully exercises the optimal control in the distributed parameter systems. In this paper, the excellent consequences are found without using the existing decentralized control or hierarchical control method.

  • PDF