DOI QR코드

DOI QR Code

Strength prediction of steady laminar fluid with normal velocity distribution: A simplified truncation technique

  • Mohamed A. Khadimallah (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Muzamal Hussain (Department of Mathematics, Govt. College University Faisalabad) ;
  • Elimam Ali (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.01.27
  • Accepted : 2023.05.03
  • Published : 2023.05.25

Abstract

In this paper, the analytic solution has been found by using truncation approach. With the help of suitable substitution, different physical parameters are yielded in their non-dimensional form. The governing boundary layer partial differential equations are reduced to a set of ordinary ones by using appropriate similarity transformations. The velocity profile across the domain have also been taken into account. The effect normal velocity profiles buoyancy parameter, slip parameter, shrinking parameter, Casson fluid parameter on the heat profile. It is found that the normal velocity profiles rise with the buoyancy parameter and for the slip parameter. It is observed that the normal velocity profile decreases with the increase of shrinking parameter. The reverse behiour is found for the Casson fluid parameter. The results are numerically computed, analyzed and discussed. For the efficiency of present model, the results are compared with earlier investigations.

Keywords

Acknowledgement

This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2023/R/1444).

References

  1. Abbas, Z., Rasool, S. and Rashidi, M.M. (2015), "Heat transfer analysis due to an unsteady stretching/shrinking cylinder with partial slip condition and suction", Ain Shams Eng. J., 6, 939-945. https://doi.org/10.1016/j.asej.2015.01.004
  2. Agranat, V.M. (1988), "Effect of pressure gradient on friction and heat transfer in a dusty boundary layer", Fluid Dyn., 23, 729-732. http://dx.doi.org/10.1007/BF02614150
  3. AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., Int. J., 25(1), 111-122. https://doi.org/10.12989/sss.2020.25.1.111
  4. Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. https://doi.org/10.12989/sss.2016.18.4.787
  5. Arefi, M. and Zenkour, A.M. (2017), "Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor", Smart Struct. Syst., Int. J., 19(1), 33-38. https://doi.org/10.12989/sss.2017.19.1.033
  6. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
  7. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., Int. J., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197
  8. Chakrabarti, K.M. (1974), "Note on Boundary layer in a dusty gas", Am. Inst. Aeronaut. Astronaut. J., 12, 1136-1137. http://dx.doi.org/10.2514/3.49427
  9. Ganesh, V.N., Ganga, B., Hakeem, A., Saranya, S. and Kalaivanan, R. (2016), "Hydromagnetic axisymmetric slip flow along a vertical stretching cylinder with a convective boundary condition", Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Физико-математические науки, 4(253), 33-47. https://doi.org/10.5862/JPM.253.3 UDC 536.24
  10. Gangadhar, K., Ramana, V., Ramaiah, D. and Kumar, B.R. (2018), "Slip flow of a nanofluid over a stretching cylinder with Cattaneo-Christov flux model: Using SRM", Int. J. Eng. Technol., 7(4.10), 225-232.
  11. Ge-JiLe, H., Javid, K., Khan, S.U., Raza, M., Khan, M.I. and Qayyum, S. (2021), "Double diffusive convection and Hall effect in creeping flow of viscous nanofluid through a convergent microchannel: a biotechnological applications", Comput. Methods Biomech. Biomed. Eng., 24(12), 1326-1343. https://doi.org/10.1080/10255842.2021.1888373
  12. Imtiaz, M., Hayat, T. and Alsaedi, A. (2016), "Mixed convection flow of Casson nanofluid over a stretching cylinder with convective boundary conditions", Adv. Power Tech., 27(5), 2245-2256. https://doi.org/10.1016.j.apt.2016.08.011 https://doi.org/10.1016.j.apt.2016.08.011
  13. Iqbal, W., Naeem, M.N. and Jalil, M. (2019), "Numerical analysis of Williamson fluid flow along an exponentially stretching cylinder", AIP Advances, 9(5), 055118. http://dx.doi.org/10.1063/1.5092737
  14. Ishak, A. and Nazar, R. (2009), "Laminar boundary layer flow along a stretching cylinder", Eur. J. Sci. Res., 36(1), 22-29.
  15. Ishak, A., Nazar, R. and Pop, I. (2008), "Uniform suction/blowing effect on flow and heat transfer due to stretching cylinder", Appl. Math. Mod., 32, 2059-2066. http://dx.doi.org/10.1016/j.apm.2007.06.036
  16. Ishak, A., Nazar, R. and Pop, I. (2008), "Uniform suction/blowing effect on flow and heat transfer due to stretching cylinder", Appl. Mathe. Modell., 32, 2059-2066. https://doi.org/10.1016/j.apm.2007.06.036
  17. Jain, S. and Bohra, S. (2018), "Entropy generation on MHD slip flow over a stretching cylinder with heat generation/absorption", Int. J. Appl. Mech. Eng., 23(2), 413-428. https://doi.org/10.2478/ijame-2018-0024
  18. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361
  19. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201
  20. Khan, M. and Hamid, A. and Hashim (2019), "Effects of thermal radiation and slip mechanism on mixed convection flow of williamson nanofluid over an inclined stretching cylinder", Commun. Theor. Phys., 71(12), 1405. https://doi.org/10.1088/0253-6102/71/12/1405
  21. Khan, M. and Malik, R. (2015), "Forced convective heat transfer to Sisko fluid flow past a stretching cylinder", AIP Advances, 5(12), 127202. http://dx.doi.org/10.1063/1.4937346
  22. Khan, S.U., Al-Khaled, K., Aldabesh, A., Awais, M. and Tlili, I. (2021), "Bioconvection flow in accelerated couple stress nanoparticles with activation energy: bio-fuel applications", Scientific Reports, 11(1), 3331. https://doi.org/10.1038/s41598-021-82209-0
  23. Konch, J. and Hazarika, G.C. (2017), "Unsteady Hydro magnetic flow of dusty fluid over a stretching cylinder with variable viscosity and thermal conductivity", Int. J. Adv. Sci. Tech., 99, 57-70. http://dx.doi.org/10.14257/ijast.2017.99.05
  24. Krommer, M., Vetyukova, Y. and Staudigl, E. (2016), "Nonlinear modelling and analysis of thin piezoelectric plates: buckling and post-buckling behavior", Smart Struct. Syst., Int. J., 18(1), 155-181. https://doi.org/10.12989/sss.2016.18.1.155
  25. Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., Int. J., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525
  26. Li, J., Zhou, L., Li, S., Lin, G. and Ding, Z. (2023), "Soil-structure interaction analysis of nuclear power plant considering three-dimensional surface topographic irregularities based on automatic octree mesh", Eng. Struct., 275, 115161. https://doi.org/10.1016/j.engstruct.2022.115161
  27. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
  28. Mahdy, A. (2015), "Heat transfer and flow of a Casson fluid due to a stretching cylinder with the soret and dufour effects", J. Eng. Phys. Thermophy., 88(4), 928-936. https://doi.org/10.1007/s10891-015-1267-6
  29. Malik, M.Y., Naseer, M., Nadeem, S. and Rehman, A. (2013), "The boundary layer flow of Casson nanofluid over an exponentially stretching cylinder", Appl. Nanosci., 4, 869-873. https://doi.org/10.1007/s 13204-013-0267-0
  30. Malik, M.Y., Hussain, A., Salahuddin, T., Awais, M., Bilal, S. and Khan, F. (2016), "Flow of Sisko fluid over a stretching cylinder and heat transfer with viscous dissipation and variable thermal conductivity: A numerical study", AIP Advances, 6(4), 045118. https://doi.org/10.1063/1.4948458
  31. Mansour, M.A., Mohamed, R.A., Abd-Elaziz, M.M. and Ahmed, S.E. (2011), "Thermal stratification and suction/injection effects on flow and heat transfer of micropolar fluid due to stretching cylinder", Int. J. Numer. Methods Biomed. Eng., 27, 1951-1963. https://doi.org/10.1002/cnm.1449
  32. Maouedj, R., Menni, Y., Inc, M., Chu, Y.M., Ameur, H. and Lorenzini, G. (2021), "Simulating the Turbulent Hydrothermal Behavior of Oil/MWCNT Nano fluid in a Solar Channel Heat Exchanger Equipped with Vortex Generators", Comput. Model. Eng. Sci., 126(3), 855-889. https://doi.org/10.32604/cmes.2021.014524
  33. Md Basir, M.F., Uddin, M.J., Md Ismail, A.I. and Beg, O.A. (2016), "Nanofluid slip flow over a stretching cylinder with Schmidt and Peclet number effects", AIP Adv., 6(5), 055316. https://doi.org/10.1063/1.4951675
  34. Mukhopadhyay, S., De, P.R., Bhattacharyya, K. and Layek, G.C. (2012), "Slip effects on mixed convection flow along a stretching cylinder", Int. J. Heat Technol., 30(2), 19-24. https://doi.org/10.18280/ijht.300203
  35. Naseer, M., Malik, M.Y., Nadeem, S. and Rehman, A. (2014), "The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder", Alexandria Eng. J., 53, 747-750. https://doi.org/10.1016/j.aej.2014.05.001
  36. Nayak, M.K., Mabood, F., Tlili, I., Dogonchi, A.S. and Khan, W.A. (2021), "Entropy optimization analysis on nonlinear thermal radiative electromagnetic Darcy-Forchheimer flow of SWCNT/MWCNT nanomaterials", Appl. Nanosci., 11, 399-418. https://doi.org/10.1007/s13204-020-01611-8
  37. Poplawski, B., Mikulowski, G., Pisarski, D., Wiszowaty, R., and Jankowski, L. (2019), "Optimum actuator placement for damping of vibrations using the Prestress-Accumulation Release control approach", Smart Struct. Syst., Int. J., 24(1), 27-35. https://doi.org/10.12989/sss.2019.24.1.027
  38. Qasim, M., Khan, Z.H., Khan, W.A. and Ali Shah, I. (2014), "MHD boundary layer slip flow and heat transfer of Ferrofluid along a stretching cylinder with prescribed heat flux", PLoS ONE, 9(1), e83930. https://doi.org/10.1371/journal pone.0083930
  39. Ramadan, K.M., Kamil, M., Tlili, I. and Qisieh, O. (2021), "Analysis of thermal creep effects on fluid flow and heat transfer in a microchannel gas heating", J. Thermal Sci. Eng. Applicat., 13(6). https://doi.org/10.1115/1.4050236
  40. Rasekh, A., Farzaneh-Gord, M., Varedi, S.R. and Ganji, D.D. (2013), "Analytical solution for magnetohydrodynamic stagnation point flow and heat transfer over a permeable stretching sheet with chemical reaction", J. Theor. Appl. Mech., 51(3), 675-686.
  41. Rasekh, A., Ganji, D.D., Tavakoli, S., Ehsani, H. and Naeejee, S. (2014), "MHD flow and heat transfer of dusty fluid over a stretching hollow cylinder with a convective boundary conditions", Heat Trans. Asian Res., 43(3), 221-232. https://doi.org/10.1002/htj.21073
  42. Rebhi, A.D. (2010), "On boundary layer flow of dusty gas from a horizontal circular cylinder", Brazil. J. Chem. Eng., 27(4), 653-662. http://dx.doi.org/10.1590/S0104-66322010000400017
  43. Rehman, A., Bazai, R., Achakzai, S., Iqbal, S. and Naseer, M. (2015), "Boundary layer flow and heat transfer of micropolar fluid over a vertical exponentially stretched cylinder", Appl. Computat. Math., 4(6), 424-430. https://doi.org/10.11648/j.acm.20150406.15
  44. Saffman, P.G. (1962), "On the stability of laminar flow of a dusty gas", J. Fluid Mech., 13, 120-128. https://doi.org/10.1017/S0022112062000555
  45. Salahuddin, T., Malik, M.Y., Hussain, A., Awais, M. and Bilal, S. (2017), "Mixed convection boundary layer flow of Williamson fluid with slip conditions over a stretching cylinder by using Keller-box method", Int. J. Nonlinear Sci. Numer. Simul., 18(1), 9-17. https://doi.org/10.1515/ijnsns.2015.0090
  46. Shafique, M., Ahmad, F., Hussain, S. and Hussain, S. (2013), "The numerical solution of suction/ injection effect on flow of fluids due to a stretching cylinder", World Appl. Sci. J., 24(5), 667-674. https://doi.org/10.5829/idosi.wasj.2013.24.05.2398
  47. Sharma, K. and Gupta, S. (2017), "Viscous dissipation and thermal radiation effects in MHD flow of Jeffrey nanofluid through impermeable surface with heat generation/absorption", Nonlinear Eng., 6(2), 153-166. https://doi.org/10.1515/nleng-2016-0078
  48. Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., Int. J., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
  49. Song, F., Liu, Y., Shen, D., Li, L. and Tan, J. (2022), "Learning Control for Motion Coordination in Wafer Scanners: Toward Gain Adaptation", IEEE Transact. Indust. Electron., 69(12), 13428-13438. https://doi.org/10.1109/TIE.2022.3142428
  50. Tlili, I. (2021), "Impact of thermal conductivity on the thermophysical properties and rheological behavior of nanofluid and hybrid nanofluid", Mathe. Sci., 1-9. https://doi.org/10.1007/s40096-021-00377-6
  51. Tlili, I., Samrat, S.P. and Sandeep, N. (2021), "A computational frame work on magnetohydrodynamic dissipative flow over a stretched region with cross diffusion: simultaneous solutions", Alexandria Eng. J., 60(3), 3143-3152. https://doi.org/10.1016/j.aej.2021.01.052
  52. Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527
  53. Wang, C.Y. (1988), "Fluid flow due to a stretching cylinder", Phys. Fluids, 31, 466-468. https://doi.org/10.1063/1.866827
  54. Wang, C.Y. and Ng, C-O. (2011), "Slip flow due to a stretching cylinder", Int. J. Non-Lin. Mech., 46, 1191-1194. https://doi.org/10.1016/j.ijnonlinmec.2011.05.04
  55. Yang, C., Zhang, J. and Huang, Z. (2022), "Numerical study on cavitation-vortex-noise correlation mechanism and dynamic mode decomposition of a hydrofoil", Phys. Fluids, 34(12), 125105. https://doi.org/10.1063/5.0128169
  56. Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., Int. J., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233
  57. Zahrai, S.M. and Kakouei, S. (2019), "Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles", Smart Struct. Syst., Int. J., 24(3), 391-401. https://doi.org/10.12989/sss.2019.24.3.391