• 제목/요약/키워드: velocity control algorithm

검색결과 612건 처리시간 0.044초

국부수평 스트랩다운 관성항법 속도 및 자세의 3 샘플 알고리즘 (A Three-Sample Algorithm for Velocity and Attitude in Local Level Strapdown Inertial Navigation)

  • 송기원;이상정
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.291-297
    • /
    • 2000
  • This paper presents an attitude determination algorithm for the local level strapdown inertial navigation where the body the earth and the transport rate can be calculated separately using a DCM computation scheme, Also presented is a velocity determination algorithm taking into account the attitude variation caused by he change of the navigation frame. The proposed algorithm are implemented using three samples of the velocity and the angle within the integration interval.

  • PDF

강인 검색 제어를 위한 속도 외란 측정 (Measurement of Velocity Disturbance for Robust Seek Control)

  • 이문노;신진호;김성우
    • 한국소음진동공학회논문집
    • /
    • 제13권11호
    • /
    • pp.860-867
    • /
    • 2003
  • This paper presents a systematic method measuring a velocity disturbance to design the robust seek loop system of optical disk drives. The velocity disturbance caused by the rotation of a disk has a greater influence on the performance of the seek control loop as the rotational speed increases. Thus, it needs to measure the extent of the velocity disturbance and design the seek control loop based on the measured data. The measurement method of the velocity disturbance is a real-time . method using a measurable velocity and a velocity controller output and is a robust method considering actuator uncertainties. The loop gain adjustment algorithm is introduced to compensate for the actuator uncertainties. The proposed method is implemented by an experimental digital system and is evaluated through an experiment.

각가속도 변화에 의해 탐지된 슬립에 기반한 주행로봇의 견인력 제어 (Traction Control of Mobile Robot Based on Slippage Detection by Angular Acceleration Change)

  • 최현도;우춘규;강현석;김수현;곽윤근
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.184-191
    • /
    • 2009
  • The common requirements of rough terrain mobile robots are long-term operation and high mobility in rough terrain to perform difficult tasks. In rough terrain, excessive wheel slip could cause an increase in the amount of dissipated energy at the contact point between the wheel and ground or, even more seriously, the robot could lose all mobility and become trapped. This paper proposes a traction control algorithm that can be independently implemented to each wheel without requiring extra sensors and devices compared with standard velocity control methods. The proposed traction algorithm is analogous to the stick-slip friction mechanism. The algorithm estimates the slippage of wheels by angular acceleration change, and controls the increase or decrease state of torque applied to wheels Simulations are performed to validate the algorithm. The proposed traction control algorithm yielded a 65.4% reduction of total slip distance and 70.6% reduction of power consumption compared with the standard velocity control method.

기중기의 흔들림 방지제어 (Anti-sway Control of Crane)

  • 노치원;이광원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.977-979
    • /
    • 1996
  • This paper presents an algorithm to control the undesirable sway of a suspended load in the crane system that has a trade-off between positioning the load and suppressing the sway of the load. The aim is to transport the load to a specified place with small sway angle as quickly as possible. Dynamic model is based on a simple pendulum driven by a velocity drive that is mostly used for actuating a trolley in industry. Proposed algorithm is composed of two parts : one is a off-line optimal trajectory generator, the other on-line tracking control. The former produces optimal trajectories minimizing energy under the speed constraint of velocity drive. The latter controls outputs to track the generated trajectories. Digital simulations and experiments are performed on a pilot crane to demonstrate the performance of the proposed control algorithm.

  • PDF

선형 보정을 이용한 구난요원의 보폭 추정 알고리즘 (Step Length Estimation Algorithm for Firefighter using Linear Calibration)

  • 이민수;주호진;박찬국;허문범
    • 제어로봇시스템학회논문지
    • /
    • 제19권7호
    • /
    • pp.640-645
    • /
    • 2013
  • This paper presents a step length estimation algorithm for Pedestrian Dead Reckoning using linear calibrated ZUPT (zero velocity update) with a foot mounted IMU. The IMU consists of 3 axis accelerometer, gyro and magnetometer. Attitude of IMU is estimated using an inertial navigation algorithm. To increase accuracy of step length estimation algorithm, we propose a stance detection algorithm and an enhanced ZUPT. The enhanced ZUPT calculates firefighter's step length considering velocity error caused by sensor bias during one step. This algorithm also works efficiently at various motions, such as crawling, sideways and stair stepping. Through experiments, the step length estimation performance of the proposed algorithm is verified.

드리프트 오차 최소화를 위한 관성-기압센서 기반의 수직속도 추정 알고리즘 (IMU-Barometric Sensor-based Vertical Velocity Estimation Algorithm for Drift-Error Minimization)

  • 지성인;이정근
    • 제어로봇시스템학회논문지
    • /
    • 제22권11호
    • /
    • pp.937-943
    • /
    • 2016
  • Vertical velocity is critical in many areas, such as the control of unmanned aerial vehicles, fall detection, and virtual reality. Conventionally, the integration of GPS (Global Positioning System) with an IMU (Inertial Measurement Unit) was popular for the estimation of vertical components. However, GPS cannot work well indoors and, more importantly, has low accuracy in the vertical direction. In order to overcome these issues, IMU-barometer integration has been suggested instead of IMU-GPS integration. This paper proposes a new complementary filter for the estimation of vertical velocity based on IMU-barometer integration. The proposed complementary filter is designed to minimize drift error in the estimated velocity by adding PID control in addition to a zero velocity update technique.

A Robust Fine Seek Controller Design Method Based on the Estimation of Velocity Disturbance

  • Lee, Moon-Noh;Shin, Jin-Ho;Kim, Seong-Woo;Lee, Jong-Min;Jin, Kyoung-Bog
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권3호
    • /
    • pp.243-250
    • /
    • 2007
  • This paper presents a systematic method of estimating a velocity disturbance occurring in the fine seek control system of an optical disk drive. A fine seek loop gain adjustment algorithm is introduced to accurately estimate the velocity disturbance in spite of the uncertainties of the fine actuator. The velocity disturbance can be estimated from a measurable velocity, a fine seek controller output, and a compensated fine actuator model. A robust fine seek controller can be designed by considering a minimum fine seek open-loop gain, calculated by the estimated velocity disturbance. The proposed controller design method is applied to the fine seek control system of a DVD rewritable drive and is evaluated through the experimental results.

미지의 파라미터를 갖는 이동 로봇들을 위한 선도-추종 방법 기반 적응 군집 제어 (Leader-following Approach Based Adaptive Formation Control for Mobile Robots with Unknown Parameters)

  • 문써레;박봉석;최윤호;박진배
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1592-1598
    • /
    • 2011
  • In this paper, a formation control method based on the leader-following approach for nonholonomic mobile robots is proposed. In the previous works, it is assumed that the followers know the leader's velocity by means of communication. However, it is difficult that the followers correctly know the leader's velocity due to the contamination or delay of information. Thus, in this paper, an adaptive approach based on the parameter projection algorithm is proposed to estimate the leader's velocity. Moreover, the adaptive backstepping technique is used to compensate the effects of a dynamic model with the unknown time-invariant and time-varying parameters. From the Lyapunov stability theory, it is proved that the errors of the closed-loop system are uniformly ultimately bounded. Simulation results illustrate the effectiveness of the proposed control method.

DSP를 이용한 원격 로봇의 제어 시스템 구현 (Implementation of a control system for a telerobot using DSP)

  • 노철래;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.844-849
    • /
    • 1991
  • A high speed control system for a telerobot using DSP is developed. The system is designed to resolve computational burden in advanced algorithms. The design is assumed to h ave no specific algorithm and robot configuration. The system is composed of a teaching box, a DSP board, a set of servo drivers and 16 bit microcomputer system. The teaching box is designed as a man-machine interface, which has two joysticks with three degrees of freedom for velocity generation in Cartesian space. The DSP board, i.e. DSP56000ADS based on a 10.25MIPS digital signal processor, DSP56001, computes the inverse Jacobian matrix which transforms Cartesian velocity into joint velocity. A resolved motion rate control algorithm for a 5 degrees of freedom manipulator was implemented. About 100 Hz sampling rate was achieved in this system.

  • PDF

역보행 제어 형태의 궤환 선형화를 이용한 양방향 플래툰 제어 (Bidirectional Platoon Control Using Backstepping-Like Feedback Linearization)

  • 권지욱
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.410-415
    • /
    • 2013
  • This paper proposes a bidirectional platoon control law using a coupled distance error based on the backstepping-like feedback linearization control method for an interconnected mobile agent system with a string structure. Unlike the previous results where the single agent was controlled using the only own information without other agents, the proposed control law cannot show the only distance error convergence of each agent, but also the string stability of the whole system. Also, the control performances are improved by the proposed control law in spite of low performance of bidirectional control strategy in the previous results. The proposed bidirectional platoon control algorithm is based on the backstepping-like feedback linearization control method. The position errors between each agent and the preceding and the behind agents are coupled by weighted summation. By the proposed control law, the distance error of each agent can converge to zero while the string stability is guaranteed when the coupled errors can converge to zero. To this end, the back-stepping control method is employed. The pseudo velocity input is determined considering the kinematic relationship between agents and the string stability. Then, the actual dynamic control input is determined to make the actual velocity converge to the pseudo velocity input. The stability analysis and the simulation results of the proposed method are included in order to demonstrate the practical application of the proposed algorithm.