• Title/Summary/Keyword: velocity control algorithm

Search Result 613, Processing Time 0.025 seconds

Localization of Multiple Robots in a Wide Area (광역에서의 다중로봇 위치인식 기법)

  • Yang, Tae-Kyung;Choi, Won-Yeon;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.293-299
    • /
    • 2010
  • The multiple block localization method in a wide area for multiple robots using iGS is proposed in this paper. The iGS is developed for the indoor global localization using ultrasonic and RF sensors. To measure the distance between a mobile robot and a beacon, the tag on the mobile robot wakes up one beacon to send out the ultrasonic signal and measures the traveling time from the beacon to the mobile robot. As the number of robots is increased, the sampling time of localization also becomes longer. Note that only one robot can localize its own position calling beacons one by one during each of the sampling interval. This is a severe constraint for the localization of multiple robots in a wide area. This paper proposes an efficient localization algorithm for the multiple robots in a wide area which can be divided into multiple blocks. For a given block, a master beacon is designated to synchronize robots. By the access of the synchronization signal, each beacon in the selected group sends out an ultrasonic signal. When the robots in the block receive the ultrasonic signal, they can calculate their own locations based on the distances to the beacons, which are obtained by the multiplication of flight time and velocity of the ultrasonic signal. The efficiency of the algorithm is verified through the real experiments.

Moving Path following and High Speed Precision Control of Autonomous Mobile Robot Using Fuzzy (퍼지를 이용한 자율 이동 로봇의 이동 경로 추종 및 고속 정밀 제어)

  • Lee, Won-Ho;Lee, Hyung-Woo;Kim, Sang-Heon;Jung, Jae-Young;Roh, Tae-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.907-913
    • /
    • 2004
  • The major interest of general mobile robot is making a route and following a maked route. But, In the case of robot that is in need of movement of partial high speed, the condition of dynamic limitation is exist, and in these conditions, it demands controlling against movements we want. In this paper, in respect of the following a route at the situation that don't have the environmental map, that is, unknown environments, to prevent the slide of moving robot or the overturn that can happen for it moves fast, we organize the dynamic condition of limitation using the fuzzy logic, and we obtain more safe and fast route tracing ability by changing the standard velocity. Especially, by modeling the line tracing mobile robot, we design the tracing controller against a realtime changing target, and using the fuzzy optimized velocity limitation controller, we confirm that our robot shows its stable tracing ability by limiting its velocity intelligently against the continuously changing line.

A Method for Eliminating Aiming Error of Unguided Anti-Tank Rocket Using Improved Target Tracking (향상된 표적 추적 기법을 이용한 무유도 대전차 로켓의 조준 오차 제거 방법)

  • Song, Jin-Mo;Kim, Tae-Wan;Park, Tai-Sun;Do, Joo-Cheol;Bae, Jong-sue
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.47-60
    • /
    • 2018
  • In this paper, we proposed a method for eliminating aiming error of unguided anti-tank rocket using improved target tracking. Since predicted fire is necessary to hit moving targets with unguided rockets, a method was proposed to estimate the position and velocity of target using fire control system. However, such a method has a problem that the hit rate may be lowered due to the aiming error of the shooter. In order to solve this problem, we used an image-based target tracking method to correct error caused by the shooter. We also proposed a robust tracking method based on TLD(Tracking Learning Detection) considering characteristics of the FCS(Fire Control System) devices. To verify the performance of our proposed algorithm, we measured the target velocity using GPS and compared it with our estimation. It is proved that our method is robust to shooter's aiming error.

Nonlinear, seismic response spectra of smart sliding isolated structures with independently variable MR dampers and variable stiffness SAIVS system

  • Nagarajaiah, Satish;Mao, Yuqing;Saharabudhe, Sanjay
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.375-393
    • /
    • 2006
  • Under high velocity, pulse type near source earthquakes semi-active control systems are very effective in reducing seismic response base isolated structures. Semi-active control systems can be classified as: 1) independently variable stiffness, 2) independently variable damping, and 3) combined variable stiffness and damping systems. Several researchers have studied the effectiveness of independently varying damping systems for seismic response reduction of base isolated structures. In this study effectiveness of a combined system consisting of a semi-active independently variable stiffness (SAIVS) device and a magnetorheological (MR) damper in reducing seismic response of base isolated structures is analytically investigated. The SAIVS device can vary the stiffness, and hence the period, of the isolation system; whereas, the MR damper enhances the energy dissipation characteristics of the isolation system. Two separate control algorithms, i.e., a nonlinear tangential stiffness moving average control algorithm for smooth switching of the SAIVS device and a Lyapunov based control algorithm for damping variation of MR damper, are developed. Single and multi degree of freedom systems consisting of sliding base isolation system and both the SAIVS device and MR damper are considered. Results are presented in the form of nonlinear response spectra, and effectiveness of combined variable stiffness and variable damping system in reducing seismic response of sliding base isolated structures is evaluated. It is shown that the combined variable stiffness and variable damping system leads to significant response reduction over cases with variable stiffness or variable damping systems acting independently, over a broad period range.

Development of the Pneumatic Manipulator of Gait Rehabilitation Robot using Fuzzy Control (퍼지제어기를 이용한 보행재활로봇의 공압식 조작기 개발)

  • Kim, Seung-Ho;Jeong, Seung-Ho;Ryu, Du-Hyeon;Jo, Gang-Hui;Kim, Bong-Ok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.169-175
    • /
    • 2000
  • Stable and comfortable walking supports, which can reduce the body weight load partially, are needed for the recovering patients from neurologic disease and orthopedic procedures. In this paper, the development of a manipulator of rehabilitation robot for the patients with walking disabilities are studied. A force controller using pneumatic actuators is designed and implemented to the human friendly rehabilitation robot considering the safety of patients, reliability of the system, effectiveness of the unloading control and economic maintenance of the system. The mechanism of the unloading manipulator is devised to improve the sensibility for the movement of the patients such as direction and velocity. For the unloading force control, fuzzy control algorithm is adopted to reduce the partial body weight and suppress the unwanted fluctuation of the body weight load to the weak legs due to the unnatural working of the patients with walking disabilities. The effectiveness of the force control is experimentally demonstrated.

  • PDF

A Study on the Adaptive Fuzzy Control of an Inverted Pendulum (적응 퍼지 제어기를 이용한 도립진자의 제어)

  • Lee, Dong-Bin;Ko, Jae-Ho;Ryu, Chang-Wan;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.687-689
    • /
    • 1998
  • This paper represents fundamental developments in Fuzzy and Neural approaches. The Fuzzy Controller(FC) and plant are cascaded in Adaptive framework. Each of which produces its outputs. The adjustable parameters all pertain to the fuzzy controller is implemented as an Adaptive FC to adjust the environments of the plant. There is an error meaure block which is a difference between the actual state and desired state. We introduce error back propagation algorithm in neural method. To speed up convergence, we follow a steepest decent in the sense that each parameter set update leads to a smaller error measure and is learned by this methodology. Inverted pendulum is a typical testbed to measure the effectiveness of nonlinear control system. finally we simulated the adaptive fuzzy controller to be able to bring back to the upright position of the its angle and angular velocity.

  • PDF

Development of a Thermoelectric Cooling System for a High Efficiency BIPV Module

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.187-193
    • /
    • 2010
  • This paper proposes a cooling system using thermoelectric elements for improving the output of building integrated photovoltaic (BIPV) modules. The temperature characteristics that improve the output of a BIPV system have rarely been studied up to now but some researchers have proposed a method using a ventilator. The efficiency of a ventilator depends mainly on the weather such as wind, irradiation etc. Because this cooling system is so sensitive to the velocity of the wind, it is unable to operate in the nominal operating cell temperature (NOCT) or the standard test condition (STC) which allow it to generate the maximum output. This paper proposes a cooling system using thermoelectric elements to solve such problems. The temperature control of thermoelectric elements can be controlled independently in an outdoor environment because it is performed by a micro-controller. In addition, it can be operated around the NOCT or the STC through an algorithm for temperature control. Therefore, the output of the system is increased and the efficiency is raised. This paper proves the validity of the proposed method by comparing the data obtained through experiments on the cooling systems of BIPV modules using a ventilator and thermoelectric elements.

Active Vibration Control of a Composite Beam Using Piezoelectric Films (압전필름을 이용한 복합재료 외팔보의 능동진동제어)

  • Kim, S.H.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.54-62
    • /
    • 1994
  • This paper presents active control methodologies to suppress structural deflections of a composite beam using a distributed piezoelectric-film actuator and sensor. Three types of different controllers are employed to achieve vibration suppression. The controllers are established depending upon the information on the velocity components of the structrue and on the deflection magnitudes as well. They are constant-amplitude controller(CAC), constant-gain mcontroller(CGC), and constant-amplitude-gain controller(CAGC). For the minimization of the residual vibration (chattering in a settled phase), which is the practical shortcoming of the conventional CAC dur to time delay phenomenon of the hardware system, a new control algoritym CAGCis designed by selecting switching constants in an optimal manner with respect to the initial tip deflection and the applied voltage. The experimental investigations of the transient and forced vibration control for the first vibrational mode are undertaken in order to compare the suppression efficiency of each control algorithm. Moreover, simultaneous controllability of various vibrational modes through the proposed scheme is also experimentally verified by pressenting both the transfer function and the phase.

  • PDF

Developing a Freeway Flow Management Scheme Under Ubiquitous System Environments (유비쿼터스 환경에서의 연속류 적정속도 관리 기술 개발)

  • Park, Eun-Mi;Seo, Ui-Hyeon;Go, Myeong-Seok;O, Hyeon-Seon
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.167-175
    • /
    • 2010
  • The ubiquitous transportation system environments make it possible to collect each vehicle's position and velocity data and to perform more sophisticated traffic flow management at the individual vehicle or platoon level through vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication. It is necessary to develop a traffic flow management scheme to take advantage of the ubiquitous transportation system environments. This paper proposes an algorithm to advise the optimal speed for each vehicle according to the traffic flow condition. The algorithm aims to stabilize the traffic flow by advising the equilibrium speed to the vehicles speeding or crawling under freely flowing condition. And it aims to prevent or at least alleviate the shockwave propagation by advising the optimal speed that should dampen the speed drop under critical flow conditions. This paper builds a simulation testbed and performs some simulation experiments for the proposed algorithm. The proposed algorithm shows the expected results in terms of travel time reduction and congestion alleviation.

Event-Triggered NMPC-Based Ship Collision Avoidance Algorithm Considering COLREGs (국제해상충돌예방규칙을 고려한 Event Triggered NMPC 기반의 선박 충돌 회피 알고리즘)

  • Yeongu Bae;Jaeha Choi;Jeonghong Park;Miniu Kang;Hyejin Kim;Wonkeun Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.155-164
    • /
    • 2023
  • About 75% of vessel collision accidents are caused by human error, which causes enormous economic loss, environmental pollution, and human casualties, thus research on automatic collision avoidance of vessels is being actively conducted. In addition, vessels must comply with the COLREGs rules stipulated by IMO when performing collision avoidance with other vessels in motion. In this study, the collision risk was calculated by estimating the position and velocity of other vessels through the Probabilistic Data Association Filter (PDAF) algorithm based on RADAR sensor data. When a collision risk is detected, we propose an event-triggered Nonlinear Model Predict Control (NMPC) algorithm that geometrically creates waypoints that satisfy COLREGs and follows them. To verify the proposed algorithm, simulations through MATLAB are performed.