• Title/Summary/Keyword: velocity components

Search Result 869, Processing Time 0.03 seconds

A Theoretical Study on Free Gyroscopic Compass

  • Jeong, Tae-Gweon;Park, Sok-Chu
    • Journal of Navigation and Port Research
    • /
    • v.30 no.9
    • /
    • pp.729-734
    • /
    • 2006
  • The authors aim to establish the theory necessary for developing the free gyroscopic compass and focus on mainly two points. One is to suggest north-finding principle by the angular velocity of the earth's rotation, and the other is to suggest orthogonal coordinate transformations of the motion rate of the spin axis, which transforms the components of motion rate in the free gyro frame into those in the platform frame and that this transformed rate is, in turn, transformed into the NED(north-east-down) navigation frame. Subsequently, ship's heading is obtained by using the fore-aft and athwartship components of the motion rate of the spin axis in the NED frame. In addition it was found how to solve the transformation matrix necessary for transforming each frame.

Second-order velocity and temperature in pulse tube refrigerators (맥동관냉동기의 2차속도와 온도)

  • Lee, H.J.;Chae, W.B.;Jeong, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.239-248
    • /
    • 1997
  • Steady components and unsteady components of second-order velocity and temperature within pulse tube refrigerators were obtained. Second-order solutions were obtained from the first-order solutions of continuity, momentum and energy equations, assuming that the amplitude of the piston motion is small. The axial temperature gradient was considered in the analysis. The flow direction of the streaming was consistent with previous experimental observations. Effects of axial temperature gradient on secondary flow and second-order temperature were shown.

  • PDF

Numerical Analysis of Drag-Reducing Turbulent Flow by Polymer Injection with Reynolds Stress Model (레이놀즈응력모델을 이용한 난류의 고분자물질 첨가 저항감소현상에 대한 수치해석)

  • Ko, Kang-Hoon;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • A modified low-Reynolds-number Reynolds stress model is developed for the calculation of drag-reducing turbulent flows induced by polymer injection. The results without polymer injection are compared with the results of direct numerical simulation to ensure the validity of the basic model. In case of drag reduction, profiles of mean velocity and Reynolds stress components, in two-dimensional channel flow, obtained with a proper value of viscosity ratio are presented and discussed. Computed mean velocity profile is in very good agreement with experimental data. And, the qualitative behavior of Reynolds stress components with the viscosity ratio is also reasonable.

An implicit decoupling method for unsteady RANS computation (비정상 RAMS 계산을 위한 내재적 분리 방법)

  • Rhee, Gwang-Hoon;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.704-708
    • /
    • 2000
  • A new efficient numerical method for computing unsteady, incompressible flows, DRANS (Decoupled Reynolds-Averaged Navier-Stokes), is presented. To eliminate the restriction of CFL condition, a fully-implicit time advancement in which the Crank-Nicolson method is used fer both the diffusion and convection terms. is adopted. Based on decomposition method, the velocity-turbulent quantity decoupling is achieved. The additional decoupling of the intermediate velocity components in the convection term is made for the fully-implicit time advancement scheme. Since the iterative procedures for the momentum, ${\kappa}\;and\;{\varepsilon}$ equations are not required, the components decouplings bring fourth the reduction of computational cost. The second-order accuracy in time of the present numerical algorithm is ascertained by computing decaying vortices. The present decoupling method is applied to turbulent boundary layer with local forcing.

  • PDF

The Numerical Calculation of the Velocity Components Induced by a Havelock Source (Havelock Source에 의한 유기 속도 성분의 수치 계산)

  • Seon-Hyung Kang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.43-54
    • /
    • 1992
  • A method of evaluating the velocity components induced by a Havelock source is presented in this paper. The mathematical manipulation of x, y and z-derivative of the Green function of the Havelock source by the use of contour integration on the complex plane has resulted in the expressions that can be readily incorporated with computer program. The accuracy and efficiency that can be secured by the use of the present mathematical expressions have been convincingly found to be highly satisfactory.

  • PDF

A Study on Numerical Adaptive Grid Generation for Incompressible Flow (비압축성유동을 위한 수치적응 격자생성에 관한 연구)

  • 이주희;이상환;윤준용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2237-2248
    • /
    • 1995
  • In incompressible flow which has multi-length scale, it has a very important effect which dependent variables are used for adaptive grid generation. Among many length scales in incompressible flow, the dependent variables used for the adaptive grid generation should be able to represent the feature of the concerned system. In this paper, by using vorticity and stream function, in addition to velocity components, the smoother and more stable grid generation is possible and these four flow properties represent each scale. The adaptive grid generation for a lid-driven cavity flow with $N_{re}$ =3200 using four flow properties such as velocity components, vorticity, stream function is performed, and the usefulness of using vorticity and stream function as the indicator for adaptive grid generation is shown.

Direct Determination of Expansion History Using Redshift Distortions

  • Song, Yong-Seon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.29.1-29.1
    • /
    • 2013
  • We investigate the direct determination of expansion history using redshift distortions without plugging into detailed cosmological parameters. The observed spectra in redshift space include a mixture of information: fluctuations of density-density and velocity-velocity spectra, and distance measures of perpendicular and parallel components to the line of sight. Unfortunately it is hard to measure all the components simultaneously without any specific prior assumption. The degeneracy breaking, between the effect of cosmic distances and redshift distortions for example, depends on the prior we assume. An alternative approach is to utilize the cosmological principle inscribed in the heart of the Friedmann-Lematre-Robertson-Walker (hereafter FLRW) universe, that is, the specific relation between the angular diameter distance and the Hubble parameter, in this degeneracy breaking.

  • PDF

Effect Investigation of Resonance by Harmonic Components on Structures with Velocity Seismoprobes in a Turbine Rotor System (속도계가 부착된 구조물에서 조화성분의 공진이 미치는 영향 고찰)

  • Yang, Kyeong-Hyeon;Cho, Chul-Whan;Bae, Chun-Hee;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.98-102
    • /
    • 2005
  • Most bearing casings are designed to focus on strength and weight of themselves because rotor speed passes through the critical speed when operation begins in large plants such as power plants. And It is treated importantly the relation between rotating frequency of the rotor and the natural frequency of casings to prevent resonance. But there is some cases that it is overlooked for harmonic components above rotating frequency. So we present experimentally a case that harmonic forces may make a resonance on casing fixing probes to measure vibration in a turbine-generator system and the vibration is generated when one component of harmonic forces excites the mode that the natural frequency of a certain bearing casing is close to one of harmonics of basic rotating frequency (1x).

  • PDF

Effect of Convex Wall Curvature on Three-Dimensional Behavior of Film Cooling Jet

  • Lee, Sang-Woo;Lee, Joon-Sik;Keon Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1121-1136
    • /
    • 2002
  • The flow characteristics of film coolant issuing into turbulent boundary layer developing on a convex surface have been investigated by means of flow visualization and three-dimensional velocity measurement. The Schlieren optical system with a spark light source was adopted to visualize the jet trajectory injected at 35° and 90° inclination angles. A five-hole directional pressure probe was used to measure three-dimensional mean velocity components at the injection angle of 35°. Flow visualization shows that at the 90° injection, the jet flow is greatly changed near the jet exit due to strong interaction with the crossflow. On the other hand, the balance between radial pressure gradient and centrifugal force plays an important role to govern the jet flow at the 35° injection. The velocity measurement shows that at a velocity ratio of 0.5, the curvature stabilizes downstream flow, which results in weakening of the bound vortex structure. However, the injectant flow is separated from the convex wall gradually, and the bound vortex maintains its structure far downstream at a velocity ratio of 1.98 with two pairs of counter rotating vortices.

Nonlinear dynamics and failure wind velocity analysis of urban trees

  • Ai, Xiaoqiu;Cheng, Yingyao;Peng, Yongbo
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.89-106
    • /
    • 2016
  • With an aim to assess the wind damage to urban trees in more realistic conditions, the nonlinear dynamics of structured trees subjected to strong winds with different levels is investigated in the present paper. For the logical treatment of dynamical behavior of trees, material nonlinearities of green wood associated with tree biomechanics and geometric nonlinearity of tree configuration are included. Applying simulated fluctuating wind velocity to the numerical model, the dynamical behavior of the structured tree is explored. A comparative study against the linear dynamics analysis usually involved in the previous researches is carried out. The failure wind velocity of urban trees is then defined, whereby the failure percentages of the tree components are exposed. Numerical investigations reveal that the nonlinear dynamics analysis of urban trees results in a more accurate solution of wind-induced response than the classical linear dynamics analysis, where the nonlinear effect of the tree behavior gives rise to be strengthened as increasing of the levels of wind velocity, i.e., the amplitude of 10-min mean wind velocity. The study of relationship between the failure percentage and the failure wind velocity provides a new perspective towards the vulnerability assessment of urban trees likely to fail due to wind actions, which is potential to link with the practical engineering.