• 제목/요약/키워드: vehicle vibration

검색결과 1,745건 처리시간 0.037초

L 형 전륜 로어 암의 대하중 강도 해석 기법 연구 (A Study on the Non-Linear Static Analysis for L-type Front Lower Control Arm)

  • 이순욱;구자석;송민수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.453-458
    • /
    • 2008
  • Under driving condition, A vehicle experiences various kinds of loads, which brings on the buckling and fracture of suspension systems. Lower control arm (LCA), which consists of 2 bush joints and 1 ball joint connection, is the one of the most important parts in the suspension system. The bush joints absorb the impact load and reduce the vibration from the road. When analyzing the LCA behavior, it is important to understand the material properties and boundary conditions of bushing systems correctly, because of the nonlinearity characteristics of the rubber. In this paper, in order to predict the large scale deformation of the LCA more precisely, three factors are newly suggested, that is, coupling of bush stiffness between translation and rotation, bush extraction force and maximum rotation angle of ball joint. LCA stiffness is estimated by CAE and component test. Analysis and test results are almost same and the validity of considering three factors in LCA analysis is verified.

  • PDF

데이터 마이닝 기법 및 경험적 모드 분해법을 이용한 회전체 이상 진단 알고리즘 개발에 관한 연구 (A Study on Fault Diagnosis Algorithm for Rotary Machine using Data Mining Method and Empirical Mode Decomposition)

  • 윤상환;박병희;이창우
    • 한국기계가공학회지
    • /
    • 제15권4호
    • /
    • pp.23-29
    • /
    • 2016
  • Rotary machine is major equipment in industry. The rotary machine is applied for a machine tool, ship, vehicle, power plant, and so on. But a spindle fault increase product's expense and decrease quality of a workpiece in machine tool. A turbine in power plant is directly connected to human safety. National crisis could be happened by stopping of rotary machine in nuclear plant. Therefore, it is very important to know rotary machine condition in industry field. This study mentioned fault diagnosis algorithm with statistical parameter and empirical mode decomposition. Vibration locations can be found by analyze kurtosis of data from triaxial axis. Support vector of data determine threshold using hyperplane with fault location. Empirical mode decomposition is used to find fault caused by intrinsic mode. This paper suggested algorithm to find direction and causes from generated fault.

과학기술위성 3호 대용량 메모리 유닛의 인증모델 설계 및 구현 (Engineering Qualification Model Design and Implementation of Mass Memory Unit for STSAT-3)

  • 서인호;오대수
    • 한국항공우주학회지
    • /
    • 제37권12호
    • /
    • pp.1258-1263
    • /
    • 2009
  • 본 논문에서는 개발된 과학기술위성3호 대용량 메모리 유닛의 검증모델의 성능 및 환경시험 결과를 나타내었다. 과학기술위성3호 대용량 메모리 유닛은 적외선 영상시스템(MIRIS)과 초소형 영상 분광기(COMIS)에서 최대 100Mbps로 수신한 데이터를 32Gb의 메모리에 저장한 후 지상으로 10Mbps의 속도로 전송하는 임무를 수행한다. 탑재체 데이터 수신 시험과 데이터 수신 시스템으로의 데이터 전송 시험을 통해서 성능을 검증 하였다. 또한 발사체 환경과 우주 환경에서의 성능 확인을 위해서 진동 시험과 열진공 시험을 수행 하였다.

주행 중 디스크 온도 변화와 열간 저더 임계속도와의 관계 예측 (A Prediction of the Relation between the Disc Brake Temperature and the Hot Judder Critical Speed)

  • 김재민;이민규;김범진;조종두
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.61-67
    • /
    • 2013
  • In this paper, it was studied how the critical speed which could occur hot judder due to disk temperature. Through the dynamometer experiment, we measured the critical velocity and surface temperature when the hot judder occur on the disk break. Also with the critical velocity theory equation and the temperature change graph of factors which used in the equation, we was induced experiment equation including theory equation and experiment values. And it has compared with the method which approach as linea. From this, we predicted the change of critical speed which could occur hot judder due to disk temperature. In addition, critical speed graph has compared with actual driving speed and disc temperature at a vehicle test. Therefore it was estimate to possibility of arising hot judder.

다분야 설계 제약 조건을 고려한 알루미늄 스페이스 프레임 차체의 최적 설계 (Aluminum Space Frame B.I.W. Optimization Considering Multidisciplinary Design Constraints)

  • 김범진;김민수;허승진
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.1-7
    • /
    • 2006
  • This paper presents an ASF (Aluminum Space Frame) BIW optimal design, which minimizes the weight and satisfies multi-disciplinary constraints such as the static stiffness, vibration characteristics, low-speed crash, high-speed crash and occupant protection. As only one cycle CPU time for all the analyses is 12 hours, the ASF design having 11-design variable is a large scaled problem. In this study, ISCD-II and conservative least square fitting method is used for efficient RSM modeling. Then, ALM method is used to solve the approximate optimization problem. The approximate optimum is sequentially added to remodel the RSM. The proposed optimization method used only 20 analyses to solve the 11-design variable design problem. Also, the optimal design can reduce the] $15\%$ of total weight while satisfying all of the multi-disciplinary design constraints.

시운전 시험을 통한 한국형 고속열차의 승차감 변화추세에 관한 연구 (Examination on the variation of ride comfort for korean high speed train through on-line test)

  • 김영국;목진용;김석원;박찬경;김기환;박태원
    • 센서학회지
    • /
    • 제14권3호
    • /
    • pp.144-149
    • /
    • 2005
  • In this paper, we introduce the variation of ride characteristics for HSR 350x(Korea High Speed Train project) through on-line test during about 3 years. The concept of term "ride comfort" is equivocal. Generally it is evaluated as the vehicle vibration. The ride comfort for HSR 350x has been assessed by statistical method according to UIC 513R. The testing results show that HSR 350x has no problems from the viewpoint of the comfort ride on the high speed line and conventional line and that 1st and 2nd suspensions play an important role in the ride characteristics for high speed train.

Rotordynamic Performance Measurements of An Oil-Free Turbocharger Supported on Gas Foil Bearings and Their Comparisons to Floating Ring Bearings

  • Lee, Yong-Bok;Park, Dong-Jin;Sim, Kyuho
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권1호
    • /
    • pp.23-35
    • /
    • 2015
  • This paper presents the rotordynamic performance measurement of oil-free turbocharger (TC) supported on gas foil bearings (GFBs) for 2 liter class diesel vehicles and comparison to floating ring bearings (FRBs). Oil-free TC was designed and developed via the rotordynamic analyses using dynamic force coefficients from GFB analyses. The rotordynamics and performance of the oil-free TC was measured up to 85 krpm while being driven by a diesel vehicle engine, and compared to a commercial oil-lubricated TC supported on FRBs. The test results showed that the GFBs increased the rotor speed by ~ 20% at engine speeds of 1,500 rpm and 1,750 rpm, yielding the reduction of turbine input energy by more than 400 W. Incidentally, an external shock test on the oil-free TC casing was conducted at the rotor speed of 60 krpm, and showed a good capability of vibration damping due to the well-known dry friction mechanism of the GFBs.

Inverse Model Control of An ER Damper System

  • Cho Jeong-Mok;Jung Taeg-Eun;Kim Dong-Hyeon;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권1호
    • /
    • pp.64-69
    • /
    • 2006
  • Due to the inherent nonlinear nature of Electro-rheological (ER) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the nonlinear damping force model is made to identify the properties of the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model is constructed by using a multi-layer perceptron neural network. A quarter-car suspension model is considered in this paper for analysis and simulation. Simulation results show that the proposed inverse model of ER damper can obtain control voltage of ER damper for required damping force.

승차감 향상을 위한 에어셀시트의 모델링 및 능동제어 (Modeling and Active Control of an Air-Cell Seat for Ride-Comfort Improvement)

  • 홍금식;황수환;홍경태;유완석
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1672-1684
    • /
    • 2004
  • In this paper, an active vibration control with the use of an air-cell seat for passenger cars is investigated. The roles of the air-cell inserted between the polyurethane foam of the seat and seat cover are first to extend the seat's capability to adopt various shapes of human body and to improve the ride-comfort against road disturbances. The air-cell seat is modeled as a 1-d.o.f. spring-damper system. Because an exact modeling of the air-cell itself is alomost impossible, its dynamic characteristics are analyzed through experiments. A road-adaptive gain-scheduled sky-hook control for the air-cell seat system is proposed. The skyhook gains are scheduled in such a way that the acceleration level transmitted to human body on various road conditions is minimized. Simulations and experimental results are provided.

지상 기동 및 고정 환경하 고장률 특성 분석 (Failure Rate Characteristics Analysis under Ground Mobile and Ground Fixed Environments)

  • 윤희성;정다운;윤종성;이승헌
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제11권3호
    • /
    • pp.293-303
    • /
    • 2011
  • Reliability Prediction using MIL-HDBK-217F has some restrictions due to its one modeling basis. One of the restrictions is caused by selecting one operating environment of a system, which is chosen regardless of its detailed conditions, e.g., external impact and vibration. Especially, an equipment, which is installed on a mobile vehicle though its movement is quasi-static, is controversial to designate its environment as ground mobile($G_M$), rather than ground fixed($G_F$). In this paper, failure rates were compared, which are computed using several moving time rates to total operating time. RiAC-HDBK-217Plus was used as the basic calculation model. In addition, $G_F$ conditioned failure rate was evaluated by comparing with that under $G_M$ environment but fixed state.