• Title/Summary/Keyword: vehicle security

Search Result 406, Processing Time 0.026 seconds

Review on Security Communication Environment in Intelligent Vehicle Transport System (지능형 차량 교통체계에서 보안 통신 리뷰)

  • Hong, Jin-Keun
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.6
    • /
    • pp.97-102
    • /
    • 2017
  • In this paper, we have interested in cooperative intelligent transport system and autonomous driving system, and focused on analysis of the characteristics of Cooperative Awareness Message (CAM) and Decentralized Environmental Notification Basis Service (DENM) message, which is key delivery message among cooperative intelligent transport system (C-ITS) characteristics for research objectivity. For research method, we also described V2X communication, and also analyzed the security certificate and header structure of CAM and DENM messages. We described CAM message, which is a message informing the position and status of the vehicle. And the DENM message is presented a message informing an event such as a vehicle accident, and analysis security communication, which is supported services. According to standard analysis result, 186 bits or 275 bits are used. In addition to the security header and the certificate format used for vehicle communication, we have gained the certificate verification procedure for vehicles and PKI characteristics for vehicles. Also We derived the characteristics and transmission capability of the security synchronization pattern required for V2X secure communication. Therefore when it is considered for communication service of DENM and CAM in the C-ITS environment, this paper may be meaningful result.

Real-time Integrity for Vehicle Black Box System (차량용 블랙박스 시스템을 위한 실시간 무결성 보장기법)

  • Kim, Yun-Gyu;Kim, Bum-Han;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.6
    • /
    • pp.49-61
    • /
    • 2009
  • Recently, a great attention has been paid to a vehicle black box device in the auto markets since it provides an accident re-construction based on the data which contains audio, video, and some meaningful driving informations. It is expected that the device will get to promote around commercial vehicles and the market will greatly grow within a few years. Drivers who equips the device in their car believes that it can find the origin of an accident and help an objective judge. Unfortunately, the current one does not provide the integrity of the data stored in the device. That is the data can be forged or modified by outsider or insider adversary because it is just designed to keep the latest data produced by itself. This fact cause a great concern in car insurance and law enforcement, since the unprotected data cannot be trusted. To resolve the problem, in this paper, we propose a novel real-time integrity protection scheme for vehicle black box device. We also present the evaluation results by simulation using our software implementation.

Authentication Scheme using Biometrics in Intelligent Vehicle Network (지능형 자동차 내부 네트워크에서 생체인증을 이용한 인증기법)

  • Lee, Kwang-Jae;Lee, Keun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.3
    • /
    • pp.15-20
    • /
    • 2013
  • Studies on the intelligent vehicles that are fused with IT and intelligent vehicle technologies are currently under active discussion. And many new service models for them are being developed. As intelligent vehicles are being actively developed, a variety of wireless services are support. As such intelligent vehicles use wireless network, they are exposed to the diverse sources of security risk. This paper aims to examine the factors to threaten intelligent vehicle, which are usually intruded through network system and propose the security solution using biometric authentication technique. The proposed security system employs biometric authentication technique model that can distinguish the physical characteristics of user.

Efficient FPGA Implementation of AES-CCM for IEEE 1609.2 Vehicle Communications Security

  • Jeong, Chanbok;Kim, Youngmin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Vehicles have increasingly evolved and become intelligent with convergence of information and communications technologies (ICT). Vehicle communications (VC) has become one of the major necessities for intelligent vehicles. However, VC suffers from serious security problems that hinder its commercialization. Hence, the IEEE 1609 Wireless Access Vehicular Environment (WAVE) protocol defines a security service for VC. This service includes Advanced Encryption Standard-Counter with CBC-MAC (AES-CCM) for data encryption in VC. A high-speed AES-CCM crypto module is necessary, because VC requires a fast communication rate between vehicles. In this study, we propose and implement an efficient AES-CCM hardware architecture for high-speed VC. First, we propose a 32-bit substitution table (S_Box) to reduce the AES module latency. Second, we employ key box register files to save key expansion results. Third, we save the input and processed data to internal register files for secure encryption and to secure data from external attacks. Finally, we design a parallel architecture for both cipher block chaining message authentication code (CBC-MAC) and the counter module in AES-CCM to improve performance. For implementation of the field programmable gate array (FPGA) hardware, we use a Xilinx Virtex-5 FPGA chip. The entire operation of the AES-CCM module is validated by timing simulations in Xilinx ISE at a speed of 166.2 MHz.

Study on Parallel Processing of ECDSA Verification for V2X Communication (V2X 통신을 위한 ECDSA 서명 검증 병렬처리 연구)

  • Lee, Sokjoon;Choi, Joongyong;Chung, Byungho;Kwon, Hyeokchan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.216-217
    • /
    • 2018
  • IEEE 1609.2 표준은 WAVE (Wireless Access in Vehicular Environment) 표준에서 차량간(V2V, Vehicle-to-Vehicle) 혹은 차량과 인프라간(V2I, Vehicle-to-Infrastructure)통신 상의 응용 메시지 보호를 위해 제정되었다. 이 표준은 메시지 이증 및 무결성 검증을 위하여 NIST p256 타원 곡선 커브 기반의 ECDSA 전자서명 기법을 사용한다. 매우 복잡한 도신 상의 출퇴근 환경에서는 수백대의 자동차가 전송하는 메시지를 정상적으로 처리하기 위하여, 차량의 OBU(On-Board Unit) 혹은 노상의 RSU(Road-Side Unit)에서 서명된 메시지의 검증 성능이 매우 중요한 이슈가 될 수 있다. 본 논문에서는 V2X 통신에서 효율적인 ECDSA 서명 검증을 위하여, OBU 혹은 RSU 환경에서 CPU 상의 병렬 처리 성능을 테스트 한 후 시사점을 살펴본다.

The Improvement of Security Certification System for Smart Car (스마트 자동차 보안 인증제도 개선방안)

  • Soon Beom Kwon;Seon Yeong Choi;Hwan Soo Lee
    • Journal of Information Technology Services
    • /
    • v.22 no.3
    • /
    • pp.49-63
    • /
    • 2023
  • The inclusion of software and wireless communication devices in vehicles has raised concerns regarding automobile security. In its response, UNECE WP.29 implemented the first-ever international standard for automotive cyber security in June 2020. Yet, the existing disparity between national standards for automotive certification systems and 「UN Regulation No. 155」 has caused confusion among auto makers. This discrepancy not only jeopardizes the security of domestic vehicles but also poses challenges to the seamless import and export of automobiles. Hence, there is a need to enhance the automotive cyber security certification system; however, there is a dearth of scholarly discourse on this topic. Consequently, this study presents a proposal for enhancing the domestic automotive cyber security certification system. In view of this, existing legal frameworks such as the 「Motor Vehicle Management Act」 and the 「Self-Driving Vehicle Act」 were reviewed, along with domestic and international automotive certification systems. The recommendations for improvement, derived from the findings, encompass institutional, legal, and operational aspects. This study is highly significant as it examines both domestic and international automotive certification systems in an area where there is a lack of academic discussion.

Analysis of Self-driving Environment Using Threat Modeling (위협 모델링을 이용한 자율 주행 환경 분석)

  • Min-Ju Park;Ji-Eun Lee;Hyo-Jeong Park;Yeon-sup Lim
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.77-90
    • /
    • 2022
  • Domestic and foreign automakers compete to lead the autonomous vehicle industry through continuously developing self-driving technologies. These self-driving technologies are evolving with dependencies on the connection between vehicles and other objects such as the environment of cars and roads. Therefore, cyber security vulnerabilities become more likely to occur in the self-driving environment, so it is necessary to prepare for them carefully. In this paper, we model the threats in autonomous vehicles and make the checklist to securely countermeasure them.

A Survey about Vulnerabilities and Solutions of Autonomous vehicle security (자율주행 자동차 보안 취약성 및 솔루션 조사)

  • JaeKyung Park;SeungYoon Kang;Chat-GPT
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.615-616
    • /
    • 2023
  • 본 논문은 자율주행 자동차의 보안 취약성과 이를 해결하기 위한 솔루션에 대한 조사를 다루고 있다. 자동차의 자율주행 및 초연결성이 대두됨에 따라 보안 위협이 점점 중요해지는 현실을 직면하고 있다. 본 논문은 다양한 취약성을 카테고리 별로 다루고, 해당 취약성에 대응하기 위한 보안 솔루션과 현재 연구 개발 중인 솔루션들을 소개하고 있다. 그러나 아직 해결되지 않은 과제들이 산적해 있으며, 연구와 개발이 계속되어야 안전하고 신뢰성 있는 초연결 자율주행 자동차를 구현할 수 있을 것으로 기대한다.

  • PDF

5th Generation Wireless Networks Security: Challenges and Solutions

  • Siddiq, Bashayer Ahmed Bin
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.157-162
    • /
    • 2022
  • In reason of the high capacity and low latency, the 5G wireless networks used nowadays in many of life applications such as: remote surgery and guiding vehicle. The high requirements of 5G networks makes it more vulnerable for security threats and attacks. This paper presents some challenges faced by 5G networks and presets some of the security solutions.

A Study on The Dangers and Their Countermeasures of Autonomous Vehicle (자율주행자동차 위험 및 대응방안에 대한 고찰)

  • Jung, Im Y.
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.90-98
    • /
    • 2020
  • Modern vehicles are evolving from manual to automatic driving. As the ratio of electrical equipment and software increases inside the vehicle, vehicles that support autonomous driving are becoming another open computer system that can communicate with the outside. The safety of the vehicle means the safety of both the passenger and the non-passenger. It is not clear whether the safety problem of ultimate autonomous vehicles can be solved by the current solution of computer systems related to fault tolerance and security. Autonomous vehicles should not be dangerous to people after they are released to the market, so it is necessary to proactively diagnose all the risks that can be predicted with current technology. This paper examines the current developments of autonomous vehicles and analyzes their dangers that threaten driving safety, as well as their countermeasures.