• Title/Summary/Keyword: vehicle motion control

Search Result 449, Processing Time 0.024 seconds

The design of attitude reference system for underwater vehicle using extended kalman filter (확장칼만필터를 이용한 수중 운동체의 자세계산 시스템 설계)

  • 홍현수;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1352-1355
    • /
    • 1997
  • This paper presents the algorithm for estimating the attitude of an underwater vehicle using EFK. The system model is designed by linerizing the nonlinear Euler angle differential equation and the measurements is a speed logger output. The simulation result shows that the estimation lagorithm is adequate for decreasing attitude errors that grow abruptly during the motion with acceleration and rotation. It also shows that we can adapt the algorithm for compensating initial attitude errors generated after initial leveling.

  • PDF

A Development of Clutch-by-Wire System for Automotive (Clutch-by-Wire 시스템 개발 연구)

  • 나완용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.204-208
    • /
    • 2003
  • This study presents a clutch-by-wire system for automotive which can be utilized on a vehicle with a manual transmission real time while the vehicle is in motion. The system consists of air valve, spring, oil pressure control valve, oil pressure cylinder, switch, etc. In this study, commercial vehicle was studied on improvement of no clutch pedal system. Therefore the results obtained effective driveability, gear shiftability, convenience for driver.

A study on the system identification technique for hydrodynamic coefficient estimation of underwater submersible (수중운동체의 유체계수 추정을 위한 시스템 식별기법 연구)

  • 양승윤;최중락;김흥렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.772-775
    • /
    • 1992
  • It is necessary to estimate hydrodynamic coefficients to design the auto-pilot system and motion simulator of submersible vehicle. In this paper, an algorithm was designed to estimate hydrodynamic coefficients of submersible vehicle. Using this algorithm, the hydrodynamic coefficients were estimated from measurements of full scale trial. The estimated hydrodynamic coefficients were used for the design of an auto-depth controller(ADC) of submersible vehicle, and the resulting ADC are proved to have a better performance than the previous one.

  • PDF

Vehicle control system base on the low power long distance communication technology(NB-IoT)

  • Kim, Sam-Taek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.6
    • /
    • pp.117-122
    • /
    • 2022
  • In this paper, we developed a vehicle control terminal using IoT and low-power long-distance communication (NB-IoT) technology. This system collects information on the location and status of a parked vehicle, and transmits the vehicle status to the vehicle owner's terminal in real time with low power to prevent vehicle theft, and in the case of a vehicle in motion, When primary information about the vehicle, such as an impact, is collected and transmitted to the server, the server analyzes the relevant data to generate secondary information on traffic congestion, road damage, and safety accidents. By sending it, you can know the exact arrival time of the vehicle at its destination. This terminal device is an IoT gateway for a vehicle and can be connected to various wired and wireless sensors inside the vehicle. In addition, the data collected from vehicle maintenance, efficient operation, and vehicles can be usefully used in the private or public sector.

The effect of vehicle velocity and drift angle on through-body AUV tunnel thruster performance

  • Saunders, Aaron;Nahon, Meyer
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.297-315
    • /
    • 2011
  • New applications of streamlined Autonomous Underwater Vehicles require an AUV capable of completing missions with both high-speed straight-line runs and slow maneuvers or station keeping tasks. At low, or zero, forward speeds, the AUV's control surfaces become ineffective. To improve an AUV's low speed maneuverability, while maintaining a low drag profile, through-body tunnel thrusters have become a popular addition to modern AUV systems. The effect of forward vehicle motion and sideslip on these types of thrusters is not well understood. In order to characterize these effects and to adapt existing tunnel thruster models to include them, an experimental system was constructed. This system includes a transverse tunnel thruster mounted in a streamlined AUV. A 6-axis load cell mounted internally was used to measure the thrust directly. The AUV was mounted in Memorial University of Newfoundland's tow tank, and several tests were run to characterize the effect of vehicle motion on the transient and steady state thruster performance. Finally, a thruster model was modified to include these effects.

Measurement of position based on correlative function in self-movement

  • Amano, Naoki;Hashimoto, Hiroshi;Higashiguchi, Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.601-604
    • /
    • 1994
  • This paper describes an effective method to estimate a position of an automous vehicle equipped with a single CCD-camera along indoor passageways. Using the sequential image data from the self-movement of the vehicle, the position is estimated by integrating the approximated motion parameters. The detection of the yaw angle that is one of the motion parameter is difficult in general, e.g. slip or error for noise, therefore the different detection is presented, which is, without shaft encoders, based on a projection function for 2D-image data and a cross-correlation function so as to be robust for noise. The approximated geometric function to estimate the position is used to reduce the computational effort. To verify the effectiveness of the method, the analysis and the computational results are shown through the simulations. Furthermore, the experimental results by using the test vehicle for the real indoor passageway are shown.

  • PDF

A Basic Study of Water Basin Experiment for Underwater Robot with Improving usability (사용자 운용 편의성을 위한 수중로봇 MR-1의 수조실험에 관한 연구)

  • Nam, Keonseok;Ryu, Jedoo;Ha, Kyoungnam
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.32-38
    • /
    • 2020
  • This paper describes a method for tracking attitude and position of underwater robots. Underwater work with underwater robots is subject to differences in work efficiency depending on the skill of the operator and the utilization of additional sensors. Therefore, this study developed an underwater robot that can operate autonomously and maintain a certain attitude when working underwater to reduce difference of work efficiency. The developed underwater robot uses 8 thrusters to control 6 degrees of freedom motion, IMU (Inertial Measurement Unit), DVL (Doppler Velocity Log) and PS (Pressure Sensor) to measure attitude and position. In addition, the thruster allocation algorithm was designed to follow the control desired value using 8 thrusters, and the motion control experiments were performed in the engineering water basin using the thruster allocation method.

Development of a New 5 DOF Mobile Robot Arm and its Motion Control System

  • Choi Hyeung-Sik;Lee Chang-Man;Chun Chang-Hun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1159-1168
    • /
    • 2006
  • In this paper, a new revolute mobile robot arm with five degree of freedom (d.o.f) was developed for autonomous moving robots. As a control system for the robot arm, a distributed control system composed of the main controller and five motor controllers for arm joints was developed. The main controller and the motor controllers w ε re developed using the ARM microprocessor and the TMS320c2407 microprocessor, respectively. A new trajectory tracking algorithm for the motor controllers was devised employing pre-generated off-line trajectory data. Also, a 3-D simulator based on the openGL software to simulate the motion of the robot arm was developed. To validate the performance of the robot system, experiments to track a specified trajectory were performed.

Vehicle Stability Analysis using a Non-linear Simplified Model (비선형 단순 모델을 이용한 차량 안정성 해석)

  • Ko, Young-Eun;Song, Chul-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.29-37
    • /
    • 2008
  • Vehicle stability is a very important subject in vehicle design and control, because vehicle safety is closely dependent upon its dynamic stability. For the vehicle stability analysis, the nonlinear vehicle model of a mid-size car with three DOF - longitudinal, lateral and yaw - is employed. A rigorous method is used to determine the vehicle stability region in plane motion. An algorithm is used to materialize a topology theorem, which enables to find the exact stability region. A stability criterion for the critical cornering is proposed.

Dynamic Modeling of Autonomous Underwater Vehicle for Underwater Surveillance and Parameter Tuning with Experiments (수중정찰용 자율무인잠수정의 운동 모델링 및 시험을 통한 계수 조정)

  • Lee, Phil-Yeop;Park, Sung-Kook;Kwon, Soon Tae;Park, Sangwoong;Jung, Hunsang;Park, Min-Soo;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.488-498
    • /
    • 2015
  • This paper presents the dynamic model of an AUV called HW200 for underwater surveillance. The mathematical model of HW200 is briefly introduced, considering its shape. The maneuvering coefficients were initially estimated using empirical formulas and a database of vehicles with similar shapes. A motion simulator, based on Simulink of Mathworks, was developed to evaluate the mathematical model of the vehicle and to tune the maneuvering coefficients. The parameters were finely tuned by comparing the experimental results and simulated responses generated with the simulator by applying the same control inputs as the experiment. The velocity of HW200 in the tuning process was fixed at a constant forward speed of 1.83 m/s. Simulations with variable speed commands were conducted, and the results showed good consistency in the motion response, attitude, and velocity of the vehicle, which were similar to those of the experiment even under the speed variation. This paper also discusses the feasibility of its application to a model-based integrated navigation system (INS) using the auxiliary information on the velocities generated by the model.