• Title/Summary/Keyword: vehicle authentication

Search Result 96, Processing Time 0.022 seconds

A Study of Authentication Scheme based on Personal Key for Safety Intelligent Vehicle (안전한 지능형 자동차를 위한 개인키 기반의 인증 기법에 관한 연구)

  • Lee, Keun-Ho
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.549-554
    • /
    • 2014
  • Studies on the intelligent vehicles that are converged with IT and vehicular technologies are currently under active discussion. A variety of communication technologies for safety intelligent vehicle services are support. As such intelligent vehicles use communication technologies, they are exposed to the diverse factors of security threats. To conduct intelligent vehicle security authentication solutions, there are some factors that can be adopted ownership, knowledge and biometrics[6,7]. This paper proposes to analyze the factors to threaten intelligent vehicle, which are usually intruded through communication network system and the security solution using biometric authentication scheme. This study proposed above user's biometrics information-based authentication scheme that can solve the anticipated problems with an intelligent vehicle, which requires a higher level of security than existing authentication solution.

An Authentication Scheme for Emergency Vehicle Priority Transit Service in VANET (VANET 기반의 긴급 차량 우선통과 서비스를 위한 인증 기법)

  • Yoon, Young-Kyun;Jung, Sou-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.749-757
    • /
    • 2008
  • In this paper, we propose an authentication scheme for EVPT (Emergency Vehicle Priority Transit) service in Vehiclar Ad-hoc Networks (VANET) enable a variety of vehicle comfort services, traffic management applications, and infotainment services. These are the basis for a new generation of preventive and active safety functions. By intelligently controlling signalling at intersections, providing additional information to the driver and warning the driver in critical situations. we therefore focus on vehicle-to-infrastructure communication for the authentication between emergency vehicles and traffic lights system. This authentication process should identify the vehicle, and provide privacy protection.

A Study on the Application of Cross-Certification Technology for the Automatic Authentication of Charging Users in ISO 15118 Standard (ISO 15118 충전 사용자 자동인증을 위한 교차인증서 기술의 적용에 관한 연구)

  • Lee, Sujeong;Shin, Minho;Jang, Hyuk-soo
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.2
    • /
    • pp.1-14
    • /
    • 2020
  • ISO 15118 is an international standard that defines communication between electric vehicles and electric vehicle chargers. Plug & Charge (PnC) was also defined as a technology to automatically authenticate users when using charging services. PnC indicates automatic authentication technology where all processes such as electric vehicle user authentication, charging and billing are automatically processed. According to the standard, certificates for chargers and CPSs (Certificate Provisioning Services) should be under the V2G (Vehicle to Grid) Root certificate. In Korea, the utility company operates its own PKI (Public Key Infrastructure), making it difficult to provide chargers under the V2G Root Certificate. Therefore, a method that can be authenticated is necessary even when you have different Root Certificates. This paper proposes to apply cross-certificate technology to PnC authentication. Automatic authentication of Cross Certification is to issue a cross-certificate of the Root CA and include it in the certificate chain to proceed with automatic authentication, even if you have different Root certificates. Applying cross-certificate technology enables verification of certificates under other Root certificates. In this paper, the PnC automatic authentication and cross certificate automatic authentication is implemented, so as to proceed with proof of concept proving that both methods are available. Define development requirements, certificate profiles, and user authentication sequences, and implement and execute them accordingly. This experiment confirms that two automatic authentication are practicable, especially the scalability of automatic authentication using cross-certificate PnC.

Secured Authentication Scheme and Charging & Discharging System Operation for Electric Vehicles (정보보호를 고려한 전기자동차 충방전 시스템의 인증과 운영에 관한 연구)

  • Lee, Sunguk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.551-557
    • /
    • 2021
  • With increase of electric vehicle in the road, the number of charging/discharging infrastructure for electric vehicle in public space is also increased rapidly. To charge or discharge the electric vehicle the user of electric vehicle and service provider should verify the each other's identity to minimize security vulnerability. This paper proposes mutual authentication scheme between electric vehicle and charging/discharging service provider with help of hash function and Message Authentication Code(MAC). Also efficient operating scheme for charging/discharging service system is proposed. The analysis shows that the system has robustness against security vulnerability. Also this system can keep the sensitive personal information of service user safely.

Pseudonym Management in Autonomous Driving Environment (자율주행환경에서 가명성 관리)

  • Hong, Jin Keun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.10
    • /
    • pp.29-35
    • /
    • 2017
  • In this paper, we describe certificate policy and characteristics in cooperation condition with Cooperative intelligent transport system and autonomous driving vehicle. Among the authentication functions of the vehicle, there is a pseudonym authentication function. This pseudonymity is provided for the purpose of protecting the privacy of information that identifies the vehicle driver, passenger or vehicle. Therefore, the purpose of the pseudonym certificate is to be used for reporting on BSM authentication or misbehavior. However, this pseudonym certificate is used in the OBE of the vehicle and does not have a cryptographic key. In this paper, we consider a method for managing a pseudonym authentication function, which is a key feature of the pseudonym certificate, such as location privacy protection, pseudonym function, disposition of linkage value or CRL, request shuffling processing by registry, butterfly key processing, The authentication policy and its characteristics are examined in detail. In connection with the management of pseudonymes of the vehicle, the attacker must record the BSM transmission and trace the driver or vehicle. In this respect, the results of this study are contributing.

Smart Card and Dynamic ID Based Electric Vehicle User Authentication Scheme (스마트카드 및 동적 ID 기반 전기 자동차 사용자 인증 스킴)

  • Jung, Su-Young;Kwak, Jin
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.141-148
    • /
    • 2013
  • Smart grid can two-way communication using ICT(Information & Communication Technology). Also, smart grid can supply to dynamic power that grafted to electric vehicle can activate to electric vehicle charging infrastructure and used to storage battery of home. Storage battery of home can resale to power provider. These electric vehicle charging infrastructure locate fixed on home, apartment, building, etc charging infrastructure that used fluid on user. If don't authentication for user of fluid user use to charging infrastructure, electric charging service can occurred to illegal use, electric charges and leakgage of electric information. In this paper, we propose smartcard and dynamic ID based user authentication scheme for used secure to electric vehicle service in smart grid environment.

Mechanism of RFID Authentication for u-Vehicle (u-Vehicle 환경에 적합한 RFID 인증 메커니즘)

  • Rhee, Yoon-Jung;Kim, Do-Hyeon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.6
    • /
    • pp.66-73
    • /
    • 2008
  • The concept of u-Vehicle is a technological model that people try to build the ubiquitous world in the car which moves, by using the RFID technology as well as the telematics service based on the location. RFID is weak on the point of information security because RFID has possibility for being abused such as chasing, counterfeiting, and invading personal privacy. RFID's tags use a weak cryptographic algorithm. This paper presents the vulnerabilities of information security under u-Vehicle environments. To solve that, we propose a mechanism enhancing RFID tag's security but with low cost by reducing the number of mutual authentication stages and using the hash function.

An Efficient Anonymous Authentication Protocol Based on Multiple Anonymous Certificates in VANET (VANET에서 다중 익명 인증서 기반 효율적인 익명 인증 프로토콜)

  • Jung, Chae-Duk;Sur, Chul;Park, Young-Ho;Rhee, Kyung-Hyune
    • The KIPS Transactions:PartC
    • /
    • v.16C no.5
    • /
    • pp.589-596
    • /
    • 2009
  • Until now, some protocols have been presented to provide vehicle's anonymity and unlinkability in VANET by means of issuing multiple anonymous certificates to each vehicle from the trust authority, or shot-time anonymous certificate to a vehicle after mutual authentication between a Roadside Unit (RSU) and the vehicle. However, these protocols have high overheads of the trust authority, RSUs and vehicles for generating anonymous certificate. In this paper, we propose an efficient anonymous authentication protocol, in which RSUs can issue multiple shot-time anonymous certificates to a vehicle to alleviate system overheads for mutual authentication between vehicles and RSUs. Several simulations are conducted to verify the efficiency of the proposed protocol in terms of RSU valid serve ratio and vehicle's computational costs. Moreover, the proposed protocol provides unlinkability and traceability when multiple RSUs are compromised, whereas previous protocols do not provide unlinkability and traceability.

Authentication Scheme using Biometrics in Intelligent Vehicle Network (지능형 자동차 내부 네트워크에서 생체인증을 이용한 인증기법)

  • Lee, Kwang-Jae;Lee, Keun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.3
    • /
    • pp.15-20
    • /
    • 2013
  • Studies on the intelligent vehicles that are fused with IT and intelligent vehicle technologies are currently under active discussion. And many new service models for them are being developed. As intelligent vehicles are being actively developed, a variety of wireless services are support. As such intelligent vehicles use wireless network, they are exposed to the diverse sources of security risk. This paper aims to examine the factors to threaten intelligent vehicle, which are usually intruded through network system and propose the security solution using biometric authentication technique. The proposed security system employs biometric authentication technique model that can distinguish the physical characteristics of user.

An Efficient Anonymous Authentication Scheme with Secure Communication in Intelligent Vehicular Ad-hoc Networks

  • Zhang, Xiaojun;Mu, Liming;Zhao, Jie;Xu, Chunxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3280-3298
    • /
    • 2019
  • Vehicular ad-hoc networks (VANETs) have become increasingly significant in intelligent transportation systems, they play a great role in improving traffic safety and efficiency. In the deployment of intelligent VANETs, intelligent vehicles can efficiently exchange important or urgent traffic information and make driving decisions. Meanwhile, secure data communication and vehicle's identity privacy have been highlighted. To cope with these security issues, in this paper, we construct an efficient anonymous authentication scheme with secure communication in intelligent VANETs. Combing the ElGamal encryption technique with a modified Schnorr signature technique, the proposed scheme provides secure anonymous authentication process for encrypted message in the vehicle-to-infrastructure communication model, and achieves identity privacy, forward security, and reply attack resistance simultaneously. Moreover, except the trusted authority (TA), any outside entity cannot trace the real identity of an intelligent vehicle. The proposed scheme is designed on an identity-based system, which can remove the costs of establishing public key infrastructure (PKI) and certificates management. Compared with existing authentication schemes, the proposed scheme is much more practical in intelligent VANETs.