• Title/Summary/Keyword: vehicle attack

Search Result 157, Processing Time 0.025 seconds

Kalman Filter Based Resilient Cyber-Physical System and its Application to an Autonomous Vehicle (칼만필터를 이용한 사이버 물리 시스템의 자율 복원성 확보 기법 및 자율주행차량 적용 연구)

  • Kim, Jae-Hoon;Kim, Dong-Gil;Lee, Dong-Ik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.5
    • /
    • pp.239-247
    • /
    • 2019
  • Recently, successful attacks on cyber-physical systems have been reported. As existing network security solutions are limited in preventing the system from malicious attacks, appropriate countermeasures are required from the perspective of the control. In this paper, the cyber and physical attacks are interpreted in terms of actuator and sensor attacks. Based on the interpretation, we suggest a strategy for designing Kalman filters to secure the resilience and safety of the system. Such a strategy is implemented in details to be applied for the lateral control of autonomous driving vehicle. A set of simulation results verify the performance of the proposed Kalman filters.

A Study on Mathematical Model of Manoeuvring Motion of Manta-type Unmanned Undersea Vehicle at Large Attack Angles (Manta형 무인잠수정의 대각도 받음각을 갖는 조종운동 수학모델에 관한 연구)

  • Bae, Jun-Young;Sohn, Kyoung-Ho;Kim, June
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.328-341
    • /
    • 2010
  • The authors adopt the Unmanned Undersea Vehicle(UUV), which has taken the shape of manta(Sohn et al. 2006). They call here it Manta-type Unmanned Undersea Test Vehicle(MUUTV). MUUTV is designed with the similar concept of UUV called Manta Test Vehicle(MTV), which was originally built by the Naval Undersea Warfare Center, USA(Lisiewicz and French 2000, Sirmalis et al. 2001, U.S. Navy 2004). The present study deals with evaluation of extreme motion of MUUTV at large attack angles. Extreme motion contains, for example, rising and depth change due to operation of hovering thrusters attached to MUUTV, lateral motion due to ocean current applied to MUUTV at low advance velocity, and so on. Numerical simulation technique has been utilized. The previous mathematical model on manoeuvring motion of MUUTV(Bae et al. 2009a) is basically adopted. Based on the results of present model experiment on extreme motion, the mathematical model is revised and supplemented in order to describe extreme motion. The hydrodynamic derivatives related to extreme motion are obtained from present model experiment and the other derivatives are referred to previous work(Bae et al. 2009a).

Deriving Essential Security Requirements of IVN through Case Analysis (사례 분석을 통한 IVN의 필수 보안 요구사항 도출)

  • Song, Yun keun;Woo, Samuel;Lee, Jungho;Lee, You sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.144-155
    • /
    • 2019
  • One of the issues of the automotive industry today is autonomous driving vehicles. In order to achieve level 3 or higher as defined by SAE International, harmonization of autonomous driving technology and connected technology is essential. Current vehicles have new features such as autonomous driving, which not only increases the number of electrical components, but also the amount and complexity of software. As a result, the attack surface, which is the access point of attack, is widening, and software security vulnerabilities are also increasing. However, the reality is that the essential security requirements for vehicles are not defined. In this paper, based on real attacks and vulnerability cases and trends, we identify the assets in the in-vehicle network and derive the threats. We also defined the security requirements and derived essential security requirements that should be applied at least to the safety of the vehicle occupant through risk analysis.

An Experimental Study on Characteristics of Hydrodynamic Forces Acting on Unmanned Undersea Vehicle at Large Attack Angles (대각도 받음각을 갖는 무인잠수정에 작용하는 동유체력 특성에 관한 실험적 연구)

  • Bae, Jun-Young;Kim, Jeong-Jung;Sohn, Kyoung-Ho
    • Journal of Navigation and Port Research
    • /
    • v.35 no.3
    • /
    • pp.197-204
    • /
    • 2011
  • The authors adopt the Unmanned Undersea Vehicle(UUV), the shape of which is like a manta. They call here it Manta UUV. Manta UUV has been designed from the similar concept of the UUV called Manta Test Vehicle(MTV), which was originally built by the Naval Undersea Warfare Center of USA(Lisiewicz and French, 2000; Simalis et al., 2001; U.S. Navy, 2004). The present study deals with the effect of Reynolds numbers on hydrodynamic forces acting on Manta UUV at large angles of attack. The large angles of attack cover the whole range of 0 to ${\pm}$ 180 degrees in horizontal plane and in vertical plane respectively. Static test at large attack angles has been carried out with two Manta UUV models in circulating water channel. The authors assume that the experimental results of hydrodynamic forces (lateral force, yaw moment, vertical force and pitch moment) are analyzed into two components, which are lift force component and cross-flow drag component. First of all, Based on two dimensional cross-flow drag coefficient at 90 degrees of attack angle, the cross-flow drag component at whole range of attack angles is calculated. Then the remainder is assumed to be the lift force component. The only cross-flow drag component is assumed to be subject to Reynolds number.entstly the authors suggest the methodology to predict hydrodynamic derivertives acting on the full-scale Manta UUV.

Periodic-and-on-Event Message-Aware Automotive Intrusion Detection System (Periodic-and-on-Event 메시지 분석이 가능한 차량용 침입탐지 기술)

  • Lee, Seyoung;Choi, Wonsuk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.373-385
    • /
    • 2021
  • To provide convenience and safety of drivers, the recent vehicles are being equipped with a number of electronic control units (ECUs). Multiple ECUs construct a network inside a vehicle to share information related to the vehicle's status; in addition, the CAN protocol is normally applied. As the modern vehicles provide highly convenient and safe services, it provides many types of attack surfaces; as a result, it makes them vulnerable to cyber attacks. The automotive IDS (Intrusion Detection System) is one of the promising techniques for securing vehicles. However, the existing methods for automotive IDS are able to analyze only periodic messages. If someone attacks on non-periodic messages, the existing methods are not able to properly detect the intrusion. In this paper, we present a method to detect intrusions including an attack using non-periodic messages. Moreover, we evaluate our method on the real vehicles, where we show that our method has 0% of FPR and 0% of FNR under our attack model.

A Design of Protocol Management System for Aggregating Messages based on Certification between Vehicles (차량간 인증 기반 메시지 집계 프로토콜 관리시스템 설계)

  • Lee, ByungKwan;Jeong, EunHee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-51
    • /
    • 2013
  • This paper proposes the design of protocol management system for aggregationg messages based on certification between vehicles which not only prevents the messages between vehicles from being forged and altered by Sybil attack by authenticating the them, and but also provides the efficient communication by aggregating the redundant vehicle messages which frequently happens when communicating. For this, the proposed system proposes the SKLC(Session Key Local Certificate) design which is a local certificate based on a session key, and the MAP(Message Aggregation Protocol) design which aggregates the redundant vehicle messages. Therefore, when the proposed system checks the certificate of vehicle, it provides the reliable information securely by verifying the integrity of vehicle with a hash function operation, and improves communication efficiency by reducing the processing time.

Convergence Security Approach for Motor Vehicle Communication Network Hacking Attack Prevention: Focus on Bluetooth Cases (자동차 내부망 통신네트워크 해킹범죄예방을 위한 융합보안적 대응방안: Bluetooth 활용사례를 중심으로)

  • Choi, Kwan;Kim, Minchi
    • Convergence Security Journal
    • /
    • v.16 no.6_2
    • /
    • pp.99-107
    • /
    • 2016
  • The purpose of this study is to analyse motor vehicle communication network hacking attacks and to provide its prevention. First, the definition of motor vehicle communication network was provided and types of in-vehicle communication network were discussed. Also, bluetooth hacking attack cases were analysed in order to illustrate dangers of hacking attacks. Based on the analysis, two preventive measures were provided. First, Motor Vehicle Safety Standard Law should be revised. Although the law provides the definition of electronic control system and its standards as well as manufacturing and maintenance for safe driving standards, the law does not have standards for electronic control system hacking prevention and defensive security programs or firmware. Second, to protect motor vehicle communication network, it is necessary to create new laws for motor vehicle communication network protection.

Vehicle Ramming Terror Attacks and Physical Barriers as a Counterterrorism Policy (차량돌진테러와 물리적 방어물에 관한 연구)

  • Yun, Minwoo;Kim, Eunyoung
    • Korean Security Journal
    • /
    • no.55
    • /
    • pp.9-29
    • /
    • 2018
  • Recently, it has been frequently reported there were rapid increase of vehicle ramming attacks in the Western countries, such as Europe, United States of America, Australia, and Canada. Vehicle ramming attacks happened in Western countries specifically targeted civilians and maliciously intented to attack as many victims as possible. and resulted in significant number of casualties and wounds. Experts in terrorism analyze the increase of terrors using vehicle is largely due to the change of terror strategy of Islamic extremest groups like ISIS which encouraging would-be terrorist to use vehicles as an effective killing weapons. Accordingly, The most of countries experienced vehicle terrorist attacks began to build physical barriers including ballards, fences, and obstacles on the main shopping streets, transportation facilities, and famous crowded places and buildings in order to prevent mass killing by terrorists' vehicle ramming attack. Contrary to such swift respond to be prepared attacks using vehicle as a weapon Western countries, there are still lack of interests in preparing this type of terrorist attacks among domestic policy makers and scholars. To fulfill the research gap, this study aimed to investigate important issues regarding physical barriers in South Korea. The contributions, implications of this study and suggestions for policy implications of this study findings were discussed in results and discuss.

A Study on Security Requirements of Electric Vehicle Charging Infrastructure Using Threat Modeling (위협모델링을 이용한 전기차 충전 인프라의 보안요구사항에 대한 연구)

  • Cha, Ye-Seul;Kim, Seung-joo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1441-1455
    • /
    • 2017
  • In order to build a secure electric vehicle charging infrastructure, security research is required because various data including charging and payment data are transmitted in the electric vehicle charging infrastructure. However, previous researches have focused on smart grid related security research such as power system infrastructure rather than charging infrastructure for electric vehicle charging. In addition, research on charging infrastructure is still lacking, and research using a systematic methodology such as threat modeling is not yet under way. Therefore, it is necessary to apply threat modeling to identify security threats and systematically analyze security requirements to build a secure electric vehicle charging infrastructure. In this paper, we analyze the electric vehicle charging infrastructure by accurately identifying possible threats and deriving objective security requirements using threat modeling including Data Flow Diagram, STRIDE, and Attack Tree.

Control of Small Scale Rotary Wing Unmanned Aerial Vehicle (R-UAV) Using Backstepping.

  • Kannan, Somasundar;Lian, Bao-Hua;Hwang, Tae-Won;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1005-1007
    • /
    • 2005
  • A Nonlinear approach to control of Small Scale Rotary Wing Unmanned Aerial Vehicle (R-UAV) is presented. Using Backstepping, a globally stabilizing control law is derived. We derive backstepping control law for angle of attack and sideslip control. The inherent nonlinear nature of the system are considered here which helps in naturally stabilizing without extensive external effort. Thus, the resulting control law is much simpler than if the feedback linearization had been used.

  • PDF