본 논문에서는 얼굴 특징을 추출하는 새로운 능동적 방식을 제안하고자 한다. 운전자의 피로 상태를 검출하기 위한 얼굴 표정 인식을 위해 얼굴 특징을 추적하고자 하였다. 그러나 대다수의 얼굴 특징 추적 방법은 다양한 조명 조건과 얼굴 움직임, 회전등으로 얼굴의 특징점이 검출하지 못하는 경우가 발생한다. 본 논문에서는 얼굴 특징을 추출하는 새로운 능동적 방식을 제안하고자 한다. 제안된 방법은 우선, 능동적 적외선 감지기를 사용하여 다양한 조명 조건하에서 동공을 검출하고, 검출된 동공은 얼굴 움직임을 예측하는데 사용되어진다. 얼굴 움직임에 따라 특징이 국부적으로 부드럽게 변화한다고 할 때, 칼만 필터로 얼굴 특징을 추적할 수 있다. 제한된 동공 위치와 칼만 필터를 동시에 사용함으로 각각의 특징 지점을 정확하게 예상할 수 있었고, Gabor 공간에서 예측 지점에 인접한 지점을 특징으로 추적할 수 있다. 패턴은 검출된 특징에서 공간적 연관성에서 추출한 특징들로 구성된다. 실험을 통하여 다양한 조명과 얼굴 방향, 표정 하에서 제안된 능동적 방법의 얼굴 추적의 실효성을 입증하였다.
본 논문에서는 얼굴 특징을 추출하는 새로운 능동적 방식을 제안하고자 한다. 운전자의 피로 상태를 검출하기 위한 얼굴 표정 인식을 위해 얼굴 특징을 추적하고자 하였다. 그러나 대다수의 얼굴 특징 추적 방법은 다양한 조명 조건과 얼굴 움직임, 회전등으로 얼굴의 특징점이 검출하지 못하는 경우가 발생한다. 그러므로 본 논문에서는 얼굴 특징을 추출하는 새로운 능동적 방식을 제안하고자 한다. 제안된 방법은 우선, 능동적 적외선 감지기를 사용하여 다양한 조명 조건 하에서 동공을 검출하고, 검출된 동공은 얼굴 움직임을 예측하는데 사용되어진다. 얼굴 움직임에 따라 특징이 국부적으로 부드럽게 변화한다고 할 때, 칼만 필터로 얼굴 특징을 추적할 수 있다. 제한된 동공 위치와 칼만 필터를 동시에 사용함으로 각각의 특징 지점을 정확하게 예상 할 수 있었고, Gabor 공간에서 예측 지점에 인접한 지점을 특징으로 추적할 수 있다. 패턴은 검출된 특징에서 공간적 연관성에서 추출한 특징들로 구성된다. 실험을 통하여 다양한 조명과 얼굴 방향, 표정 하에서 제안된 능동적 방법의 얼굴 추적의 실효성을 입증하였다.
분산 비디오 부호화기법(DVC: Distributed Video Coding)의 성능을 개선하기 위한 한 가지의 방법으로서 보조정보에 대한 반복적인 보정기법에 대한 연구가 활발히 진행되고 있다. 기존의 대표적인 반복적인 보정기법으로서 복원 레벨과 보조정보 사이의 관계를 이용한 기법 또는, 움직임 벡터의 필터링에 기초한 보정기법이 제시하고 있으나 성능 개선은 제한적이다. 기존 방식들의 성능 제한을 극복하기 위해, 본 논문에서는, 먼저, 초기의 보조정보 생성 시에 블록별 비용을 측정하여 적응적 움직임 보상을 수행한다. 그리고 수신되는 비트 플레인 정보를 이용하여 블록별 적응적 예측 모드를 사용함으로써 비대칭적인 물체의 움직임 보상에 효과적인 반복적인 보정기법을 제안한다. 모의실험을 통하여 본 논문에서 제안된 보정기법을 사용함으로써 최대 0.2 dB이상의 성능을 개선함을 보인다.
흉부 컴퓨터단층영상에서의 얻어진 폐 영상은 볼륨과 형태 등의 정량적인 정보들로서 진단과 수술 계획 등에 있어서 필연적 정보를 제공한다. 일반적인 영상분할은 이미지를 구성 요소영역이나 목적물에 따라 나누는 방법이다. 그러나 재분할을 하는 단계에서 최종영상은 에너지 최소화를 해결하는 정도에 의존하며, 분할은 응용대상의 관심 영역에서 객체나 물체의 경계에서 정지하게 된다. 가변형 능동모델은 컴퓨터 비젼, 영상처리 분야에서 광범위하게 사용되고 있다. 또한 영역 분할은 현재까지 많은 연구가 되고 있으며, Xu에 의해서 GVF라는 새로운 형태의 외부힘이 제안되고 있다. 본 논문에서 제안하는 알고리듬은 흉부 컴퓨터단층영상에서 실질을 자동 분할하기 위해서 에너지 최소화 방법을 사용하고, 영역분할을 위해 개선된 가변형 능동모델을 제안한다. 알고리듬은 정확한 영역분할을 위해서 기존 방법과 다른 개선된 외부힘을 정의하는 것이다. 임상의 실험은 흉부 컴퓨터단층영상에서 진단에 필요로 하는 폐 실질의 분할이 성공적인 결과를 나타내었다.
사용자들은 외부 스토리지를 사용함으로써 언제, 어디서나 자신의 데이터에 접근할 수 있다. 하지만 자신의 데이터가 어떻게 관리되고 있는지는 알 수 없다. 심지어 자신의 데이터에 손상이 발생하여도 인지할 수 없다. 이와 같은 불편을 해결하기 위해 외부 스토리지 검증기법들이 제안되었다. 대부분의 기법들이 준동형 검증 태그(homomorphic verifiable tags)를 사용하고 있지만, 이는 데이터를 지수로 하여 계산하기 때문에 효율성에 한계가 있다. 본 논문에서는 외부 스토리지 무결성 검증의 새로운 접근 방법으로써 계수행렬을 이용한 기법을 제안한다. 제안하는 기법은 데이터를 계수행렬의 형태로 변환하여 검증에 사용한다. 검증과정은 선형연립방정식의 해를 구하는 형태로 진행되며, 검증자는 수식에 해벡터를 대입함으로써 쉽게 검증을 수행할 수 있다. 제안하는 기법을 사용하면 검증자는 sqrt(n) 크기의 데이터로 크기가 n인 데이터를 검증할 수 있다.
본 논문은 미분오차 척도를 이용하여 메쉬를 간략화 하는 새로울 알고리즘을 제안한다. 많은 간략화 알고리즘은 거리 오차 척도를 이용하였으나, 거리 오차 척도는 높은 곡률을 갖는 동시에 작은 거리오차를 갖는 지역에 대해서는 메쉬 간략화를 위한 정확한 기하학적 오차 측정이 어렵다. 본 논문은 간략화를 위해 새로운 오차 척도인 미분 오차 척도를 제안한다. 미분 오차 척도란 거리 오차 척도와 거리 오차의 1차 미분인 탄젠트 오차 척도, 그리고 거리 오차의 2차 미분인 곡률 오차 척도를 합하여 정의된 오차척도로서, 모델의 특징 부분의 형상을 최대한으로 보존 가능하다. 메쉬는 이산 표면이지만 알지 못하는 부드러운 표면의 불연속선형 근사로 표현될 수 있고, 이산 표면은 미분이 추정 가능하므로 미분 오차 척도라는 새로운 개념을 도입할 수 있다. 본 간략화 알고리즘은 반복적인 모서리 축약(Edge Collapse)에 바탕을 두고 있고, 미분 오차 척도를 이용하여 기하학적으로 원래의 형상이 잘 유지되는 새로운 점의 위치를 찾을 수 있다. 본 논문에서는 기존 방법보다 더 작은 기하학적인 오차와 높은 품질의 간략화 된 모델의 예를 보여준다.
스트림 데이터는 시간에 따라 연속적으로 변화하는 일련의 값들로 나타난다. 이러한 스트림 데이터의 특성상 다양한 시간 간격의 기준에 따라 계속적으로 그 동향이 달라질 수 있다. 이 때문에 스트림 데이터의 추세 예측은 간격이 갱신될 때 마다 연속적인 환경에서 여러 간격들을 기준으로 동시에 이루어지는 연속 다중 예측(Continuous Multiple Prediction, CMP)이 지원되어야 한다. 본 논문은 스트림 데이터의 연속 다중 예측을 효과적으로 지원하기 위하여, 신피질 학습 모델인 계층형 시간적 메모리(Hierarchical Temporal Memory, HTM) 모델을 확장하여 연속통합 HTM(Continuous Integrated HTM, CIHTM) 네트워크를 제안한다. 이를 위해 우리는 HTM 네트워크를 구성하는 기존 노드들 외에 새롭게 이동 벡터 파일 센서, 시공간 분류 노드, 다중 통합 노드를 고안하였다. 그리고 이들을 바탕으로 CIHTM 네트워크의 학습과 추론 알고리즘을 개발하였다.
현재 프로그래밍 소스들이 온라인에서 공개되어 있기 때문에 무분별한 표절이나 저작권에 대한 문제가 일어나고 있다. 그 중 반복된 저자가 작성한 소스코드는 프로그래밍 특성상 고유의 지문이 있을 수 있다. 본 논문은 구글 코드 잼 프로그램 소스를 심층신경망을 이용한 학습을 통해 각각의 저자를 분별하는 것이다. 이 때 원작자의 소스를 예측 기반 벡터나, 주파수 기반 접근법인 TF-IDF등의 전처리기를 사용하여 입력값들을 벡터화해주고, 심층신경망을 이용한 학습을 통해 각 프로그램 소스 원작자를 식별하고자 한다. 전처리기를 이용하여 언어에 독립적인 학습시스템을 구성하고, 기존의 다른 학습 방법들과 비교하였다. 그 중 TF-IDF와 심층신경망을 사용한 모델은 다른 전처리기나 다른 학습방식을 사용한 것보다 좋은 성능을 보임을 확인하였다.
본 논문에서는 단일 클래스만을 학습하여 네트워크 침입탐지 시스템 상에서 새로운 비정상 행위를 탐지하는 것을 목표로 한다. 분류 성능 평가를 위해 KDD CUP 1999 데이터셋을 사용한다. 단일 클래스 분류는 정상 클래스만을 학습하여 공격 클래스를 분류해내는 비지도 학습 방법 중 하나이다. 비지도 학습의 경우에는 학습에 네거티브 인스턴스를 사용하지 않기 때문에 상대적으로 높은 분류 효율을 내는 것이 어렵다. 하지만, 비지도 학습은 라벨이 없는 데이터를 분류하는데 적합한 장점이 있다. 본 연구에서는 서포트벡터머신 기반의 단일 클래스 분류기와 밀도 추정 기반의 단일 클래스 분류기를 사용한 실험을 통해 기존에 없던 새로운 공격에 대한 탐지를 한다. 밀도 추정 기반의 분류기를 사용한 실험이 상대적으로 더 좋은 성능을 보였고, 신규 공격에 대해 낮은 FPR을 유지하면서도 약 96%의 탐지율을 보인다.
추천 시스템의 등급 예측 정확도를 높이기 위해서는, 사용자 항목 등급 데이터뿐만 아니라 주석, 태그 또는 설명과 같은 항목의 보조 정보도 고려해야만 한다. 기존 접근법에서는 단어 단위에서 bag-of-words 모델을 사용하여 보조 정보를 모델링한다. 그러나 이러한 모델은 보조 정보를 효과적으로 활용할 수 없으므로 보조 정보를 제한적으로 이해하게 된다. 한편, 컨볼루션 신경망(CNN)에서는 보조 정보로부터 특징 벡터를 효과적으로 포착하고 추출할 수 있다. 따라서 본 논문에서는 새로운 추천 모델을 위해 딥 CNN을 행렬 분해에 통합시킨 문자 수준의 딥 컨볼루션 신경망 기반 행렬 분해 (Char-DCNN-MF) 방법을 제안한다. Char-DCNN-MF에서는 보조 정보를 더 심층적으로 이해하고 추천 성능을 더욱 향상시킬 수 있다. 실험은 세 가지 다른 실제 데이터 세트에서 수행되었으며 그 결과는 Char-DCNN-MF가 다른 비교 모델보다 유의적으로 뛰어난 성능을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.