• Title/Summary/Keyword: varying interpolator

Search Result 10, Processing Time 0.036 seconds

A Design of a Tile-Based Rasterizer Using Varying Interpolator by Pixel Block Unit (Pixel Block 단위 Varying Interpolator를 적용한 타일기반 Rasterizer 설계)

  • Kim, Chi-Yong
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.403-408
    • /
    • 2014
  • In this paper, we propose a rasterizer architecture using varying interpolator which process several pixels at a time. Proposed rasterizer is able to handle 16 pixel at a time and output the color of up to 64. It can reduce the redundancy of calculation by configuring a matrix transformation and matrix calculation for rasterization, and it can enhance the speed of rasterizer by increasing the reusability. As a result, proposed rasterizer has improve 11% in color interpolation, 17% in the processing speed of the rasterizer by comparing with conventional research.

Research on Machineability in NURBS Interpolator Considering Constant Material Removal Rate (소재제거율을 일정하게 한 NURBS 보간기에서 절삭성 고찰)

  • Ko Tae Jo;Kim Hee Sul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.60-66
    • /
    • 2004
  • Increasing demands on precision machining of 3D free-form surface have necessitated the tool to move smoothly with varying feedrate. To this regard, parametric interpolators such as NURBS (Non-Uniform Rational B-Spline) interpolator have been introduced in CNC machining system. Such interpolators reduce the data burden in NC code, increase data transfer rate into NC controller, and finally give smooth motion while machining. In this research, a new concept to control cutting load in NURBS Interpolator was tried based on the curvature of curve. This is to protect cutting tool, and to have good machinability. For proof of the system, cutting force and surface topography were evaluated. From the experimental results. the interpolator is good enough for machining a free-form surface.

Development of the Real-Time 3D NURBS Interpolator for CNC Machines (CNC 공작기계의 실시간 3차원 NURBS 보간기 개발)

  • 홍원표;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1032-1035
    • /
    • 2000
  • Increasing demands on precision machining with computerized numerical control (CNC) machines have necessitated that the tool to move not only position error as small as possible, but also with smoothly varying feedrates in space. This paper presents a new high precision interpolation algorithm for 3-dimensional (3D) Non-Uniform Rational B-Spline (NURBS) curve in the reference-pulse CNC technique. Based on the minimum path error strategy, real-time NURBS interpolator was developed in software and this was implemented with a PC-NC milling machine. The several experimental results have shown that the proposed NURBS interpolator is useful for the high precision machining of complex shapes. It is expected that this algorithm can be applied to the CNC machines for the machining of 3D free-form surfaces.

  • PDF

Design of a programmable current-mode folding/interpolation CMOS A/D converter (프로그래머블 전류모드 폴딩 . 인터폴레이션 CMOS A/D 변환기 설계)

  • 김형훈
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.45-48
    • /
    • 2001
  • An programmable current-mode folding and interpolation analog to digital converter (ADC) with programmable interpolator is proposed in this paper. A programmable interpolator is employed not only to vary the resolution of data converter, but also to decrease a power dissipation within the ADC. Because of varying the number of interpolation circuits, resolution is vary from 6 to 10bit. The designed ADC fabricated by a 0.6${\mu}{\textrm}{m}$ n-well CMOS double metal/single poly process. The experimental result shows the power dissipation from 26 to 87mW with a power supply of 3.3V.

  • PDF

Simultaneous 3D Machining with Real-Time NURBS Interpolation

  • Hong, Won-Pyo;Lee, Seok-Woo;Park, Hon-Zong;Yang, Min-Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.336-342
    • /
    • 2003
  • Increasing demand on precision machining using computerized numerical control (CNC) machines have necessitated that the tool move not only with the smallest possible position error but also with smoothly varying feedrates in 3-dimensional (3D) space. This paper presents the simultaneous 3D machining process investigated using a retrofitted PC-NC milling machine. To achieve the simultaneous 3-axis motions, a new precision interpolation algorithm for 3D Non Uniform Rational B-Spline (NURBS) curve is proposed. With this accurate and efficient algorithm for the generation of complex 3D shapes, a real-time NURBS interpolator was developed using a PC and the simultaneous 3D machining was accomplished satisfactorily.

NURBS Interpolation Algorithm for CNC Machines (CNC 공작기계의 NURBS 보간 알고리즘에 관한 연구)

  • Hong, Won-Pyo;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.115-120
    • /
    • 2000
  • Increasing demands on precision machining of free-form surface have necessitated that the tool to move not only position error as small as possible, but also with smoothly varying feedrates. This paper presents new algorithm for high precision 3D(3-dimensional) NURBS(Non-Uniform Rational B-Spline) interpolation in the reference-pulse technique. Based o the minimum path error strategy, interpolation algorithm was designed to follow the NURBS curve. Using this algorithm a real-time 3D NURBS interpolator was developed in software. The algorithm implemented in a PC showed promising results in interpolation error and speed performance. It is expected that this can be applied to the CNC systems for the high precision machining of complex shapes.

  • PDF

Adaptive feedrate interpolator for NURBS curve (NURBS 가공을 위한 적응이송속도 보간기)

  • 마르첸코티혼;백대균;고태조;김희술
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.94-99
    • /
    • 2002
  • Increasing demands on precision machining of 3D free-form surface have necessitated the tool smoothly varying feedrates. This paper presents on of algorithm for adaptive feedrate on NURBS curve. Since the algorithm for calculating variable feedrate depends on the curvature of curve, it permits to get constant material tool can be protected un terms of tool chipping vibration, etc.

  • PDF

Development of a Reference-Pulse Type 3-Axis Simultaneously Controlled PC-NC Milling System (Reference-Pulse 방식 3축 동시제어 PC-NC 밀링 시스템 개발에 관한 연구)

  • Yang, Min-Yang;Hong, Won-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.197-203
    • /
    • 1999
  • Increasing demands on precision machining have necessitated the tool to move not only position error as small as possible, but also with smoothly varying feedrates. Because of the lack of accurate and efficient algorithms for generation of 3-dimensional lines and circles, a full accomlishment for available machine tool resolution is generally unavailable. In this paper, a reference-pulse type 3-axis PC_NC milling system is developed for the precision machining of complex shapes in 3-dimensional space. Three AC servomotors are used as the actuator instead of the hand wheel to operate a 3-axis milling machine under the same mechanical structure. A PC is used to handle the control signal calculation for various types of motion command. To achieve the synchronous 3-axis motion, a real-time reference-pulse 3-dimensional linear and circular interpolator based on the intersection criteria is developed in software. The performance test via computer simulation and actual machining have shown that the PC-NC milling system is useful for the machining of arbitrary lines and circles in 3-dimensional space.

  • PDF

Hardware-Saving Realizations of Interpolators and Decimators Using Periodically Time-Varying Coefficients

  • Ratansanya, San;Amornraksa, Thumrongrat;Tipakorn, Bundit
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.860-863
    • /
    • 2002
  • Realizations of multirate converters are proposed using periodically time-varying (PTV) structures. By exploiting the computational redundancy of the filtering operation in a multirate filter, it is possible to implement the filter with much less hardware. In the proposed implementations, several coefficients time-share in a periodic fashion the hardware of one multiply-and-add. Therefore, each multiply-and-add circuit performs different coefficient scalings at different time instants within a period. Compared to the direct form realization, the proposed realizations reduce the hardware of an interpolator and a decimator by a factor of approximately U and M, respectively, while retaining the same processing speed, where U and M are the upsampling and downsampling factors, respectively. The approach can be used to obtain realizations for sampling rate conversion by a rational factor of U/M, where U and M are relatively prime, in which case hardware reduction by a factor of approximately UM can be achieved.

  • PDF

Development of Software Interpolators for PC-based NC Machine Tools (PC-based NC 공작기계의 소프트웨어 보간기 개발)

  • Yang, Min-Yang;Hong, Won-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.99-105
    • /
    • 1996
  • Increasing demands on precision machining of free-form surfaces have necessitated the tool to move not only with position error as small as possible, but also with smoothly varying feedrates. In this paper, linear, circular and spline interpolators were developed in reference-pulse type using PC. M-SAM and M-DAM were designed by the comparison and analysis of previous interpolation methods. Spline interpolator was designed to follow the free-form curves. To apply to the real cutting process, constant feedrate compensation and acceleration-deceleration compensation were conceived. Finally, its performance was tested using retrofitted milling machine. As a result, new interpolation algorithm is favorable in precision machining of free-form curves.

  • PDF