• Title/Summary/Keyword: various emission rate

Search Result 332, Processing Time 0.025 seconds

Measurement of R-134a Leakage from Vehicle Equipped Mobile Air Conditioning(MAC) System (실차를 이용한 자동차 에어컨 냉매 누출량 평가)

  • Kim, Ji Young;Seo, Chungyoul;Lee, Sangeun;Kim, Jeongsoo
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.153-159
    • /
    • 2012
  • CFC-12 used in mobile air conditioning(MAC) system has been replaced by R-134a, a type of HFC refrigerant, from 1991 to 1994. R-134a has since been widely used as a refrigerant of a mobile air conditioner. However, it is one of the six main green house gases listed in Kyoto Protocol, which makes it imperative to regulate its emission and develop alternative refrigerants. In this study, the concentration of leaked R-134a was measured using VT(Variable Temperature) shed and Running loss test shed to analyze the level of air conditioner refrigerant leaked in a vehicle. According to the analysis of the concentration of R-134a leaked from a vehicle parked, annual leakage amount of R-134a was in the range of 6.46~13.28 g/yr. The figure was similar with the leakage from the mobile air conditioning system currently used. In a study using the same vehicle model, a vehicle equipped with dual evaporation system had a higher leakage rate of refrigerant than a vehicle with a single evaporation system. It appears that the added fittings and joints of the dual evaporator system led to higher leakage rate. Besides, the analysis of the change in R-134a concentration under various car speed found that more refrigerant leaked under high speed(100km/hr) and but the volume of the wind did not affect to the variation of refrigerant leakage.

Influences of Termite Activities on Ecosystem Carbon Cycle: Focusing on Coarse Woody Debris Decomposition (흰개미가 생태계 탄소 순환에 미치는 영향: 고사목 분해를 중심으로)

  • Kim, Seongjun;Lee, Jongyeol;Han, Seung Hyun;Chang, Hanna;Lee, Sohye;Yun, Hyeon Min;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Globally, there are more than 2600 species of termites which adapted plenty of terrestrial ecosystems by various strategies such as making termite nest and society. Various studies were recently carried out on termites because they play significant roles in the context of carbon (C) cycle of terrestrial ecosystems. According to the results of previous studies, termite activities influenced the amount of soil organic C, methane emission, and organic matter decomposition. Termite nests, where termite biomass was concentrated, exhibited 1.8 times higher soil organic C concentration than reference soils, and emitted $0.0-6.0kg\;ha^{-1}year^{-1}$ of methane in tropical forests and savannas. Feeding activity of termites, in addition, accelerated coarse woody debris (CWD) decomposition by increasing the surface area to volume ratio of CWD. Especially, CWD decomposition induced by the Rhinotermitidae family appeared to be significant for the C cycle in temperate forests. However, more studies should be conducted on termite-induced CWD decomposition in temperate forests because few studies have dealt with it. The termite-induced CWD decomposition could be measured by preparing disc-shaped CWD samples, excluding access of termites to the CWD samples, and comparing the decomposition rate of the CWD samples with and without the termite exclusion treatment. Studies on the termite-induced CWD decomposition would contribute to further elucidation of the C cycle in temperate forests.

Simulation of the effect of inclusions length and angle on the failure behavior of concrete structure under 3D compressive test: Experimental test and numerical simulation

  • Mohammad Saeed, Amini;Vahab, Sarfarazi;Kaveh, Asgari;Xiao, Wang;Mojtaba Moheb, Hoori
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2023
  • Man-made structure materials like concrete usually contain inclusions. These inclusions affect the mechanical properties of concrete. In this investigation, the influence of inclusion length and inclination angle on three-dimensional failure mechanism of concrete under uniaxial compression were performed using experimental test and numerical simulation. Approach of acoustic emission were jointly used to analyze the damage and fracture process. Besides, by combining the stress-strain behavior, quantitative determination of the thresholds of crack stress were done. concrete specimens with dimensions of 120 mm × 150 mm × 100 mm were provided. One and two holes filled by gypsum are incorporated in concrete samples. To build the inclusion, firstly cylinder steel tube was pre-inserting into the concrete and removing them after the initial hardening of the specimen. Secondly, the gypsum was poured into the holes. Tensile strengths of concrete and gypsum were 2.45 MPa and 1.5 MPa, respectively. The angle bertween inclusions and axial loadind ary from 0 to 90 with increases of 30. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Diameter of the hole was 20 mm. Entirely 20 various models were examined under uniaxial test. Simultaneous with experimental tests, numerical simulation (Particle flow code in two dimension) were carried out on the numerical models containing the inclusions. The numerical model were calibrated firstly by experimental outputs and then failure behavior of models containing inclusions have been investigated. The angle bertween inclusions and axial loadind vary from 0 to 90 with increases of 15. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Entirely 32 various models were examined under uniaxial test. Loading rate was 0.05 mm/sec. The results indicated that when inclusion has occupied 100% of sample thickness, two tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusion has occupied 75% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusions have occupied 50% and 25% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. Also the inclusion was failed by one tensile crack. The compressive strength of samples decease with the decreases of the inclusions length, and inclusion angle had some effects on that. Failure of concrete is mostly due to the tensile crack. The behavior of crack, was affected by the inclusion length and inclusion number.

Low Temperature Growth of MCN(M=Ti, Hf) Coating Layers by Plasma Enhanced MOCVD and Study on Their Characteristics (플라즈마 보조 유기금속 화학기상 증착법에 의한 MCN(M=Ti, Hf) 코팅막의 저온성장과 그들의 특성연구)

  • Boo, Jin-Hyo;Heo, Cheol-Ho;Cho, Yong-Ki;Yoon, Joo-Sun;Han, Jeon-G.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.563-575
    • /
    • 2006
  • Ti(C,N) films are synthesized by pulsed DC plasma enhanced chemical vapor deposition (PEMOCVD) using metal-organic compounds of tetrakis diethylamide titanium at $200-300^{\circ}C$. To compare plasma parameter, in this study, $H_2$ and $He/H_2$ gases are used as carrier gas. The effect of $N_2\;and\;NH_3$ gases as reactive gas is also evaluated in reduction of C content of the films. Radical formation and ionization behaviors in plasma are analyzed in-situ by optical emission spectroscopy (OES) at various pulsed bias voltages and gas species. He and $H_2$ mixture is very effective in enhancing ionization of radicals, especially for the $N_2$. Ammonia $(NH_3)$ gas also highly reduces the formation of CN radical, thereby decreasing C content of Ti(C, N) films in a great deal. The microhardness of film is obtained to be $1,250\;Hk_{0.01}\;to\;1,760\;Hk_{0.01}$ depending on gas species and bias voltage. Higher hardness can be obtained under the conditions of $H_2\;and\;N_2$ gases as well as bias voltage of 600 V. Hf(C, N) films were also obtained by pulsed DC PEMOCYB from tetrakis diethyl-amide hafnium and $N_2/He-H_2$ mixture. The depositions were carried out at temperature of below $300^{\circ}C$, total chamber pressure of 1 Torr and varying the deposition parameters. Influences of the nitrogen contents in the plasma decreased the growth rate and attributed to amorphous components, to the high carbon content of the film. In XRD analysis the domain lattice plain was (111) direction and the maximum microhardness was observed to be $2,460\;Hk_{0.025}$ for a Hf(C,N) film grown under -600 V and 0.1 flow rate of nitrogen. The optical emission spectra measured during PEMOCVD processes of Hf(C, N) film growth were also discussed. $N_2,\;N_2^+$, H, He, CH, CN radicals and metal species(Hf) were detected and CH, CN radicals that make an important role of total PEMOCVD process increased carbon content.

A Study on Recycling Capacity Assessment of Livestock Manure (가축분뇨의 자원화 용량 평가에 관한 연구)

  • Ahn, Tae Woong;Choi, I Song;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.5
    • /
    • pp.311-320
    • /
    • 2008
  • Reusing livestock manure have various advantages in securing soil organic resources, and since the costs needed for converting them into liquefied fertilizers are relatively moderate compared to normal treatment, such methods are necessary. In this study, the Recycling Capacity Assessment of Gyeonggi-do was carried out by comparing between the fertilizer demands for specific crops based on the cultivation areas and the amount of fertilizer resources that are generated from livestock manure. From this assessment, the possibility of obtaining resources by converting livestock manure into fertilizers were evaluated. The amount generated of Livestock Manure in Gyeonggi-do were evaluated by applying the emission units to the number of livestock manure. And from the amount generated of Livestock Manure, the amount of fertilizer produced from Livestock Manure were calculated by using the fertilizer a component rate. When considering the amount of fertilizer produced from Livestock Manure based on the type of livestock, N 6,626 ton/year, $P_2O_5$ 1,824 ton/year, $K_2O$ 4,480 ton/year were produced from milk cow manure, while N 5,247 ton/year, $P_2O_5$ 2,772 ton/year, $K_2O$ 2,879 ton/year, were produced from beef cattle manure. N 14,924 ton/year, $P_2O_5$ 7,205 ton/year, $K_2O$ 6,750 ton/year were produced from pigs and N 12,651 ton/year, $P_2O_5$ 4,458 ton/year, $K_2O$ 5,542 ton/year were produced by chickens. So the total amount of fertilizers that can be obtained from livestock manure were 3,668 ton/year Nitrogen, 16,259 ton/year phosphate and 19,651 ton/year kalium. And the total fertilizer demands in Gyeonggi-do were Nitrogen 27,200 ton/year, Phosphate 8,853 ton/year, and kalium 13,211 ton/year respectively. Nitrogen which had higher demands than production quantities were considered as limitation factors in crop growth. So the Recycling Capacity Assessment was carried out mainly based on Nitrogen. Since the Nitrogen quantities that can be provided by recycling livestock manure were 3,532 ton/year lesser than the Nitrogen demands, it is estimated that it would be desirable to convert livestock manure into resources. But in order to properly convert the entire livestock manure into organic resources, the seasonal situation that effects the nitrogen demands of crops along with the regional effects due to the industrial structures should be seriously analyzed. In addition, a system that can effectively produce and manage fertilizer should be established.

Low-temperature synthesis of nc-Si/a-SiNx: H quantum dot thin films using RF/UHF high density PECVD plasmas

  • Yin, Yongyi;Sahu, B.B.;Lee, J.S.;Kim, H.R.;Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.341-341
    • /
    • 2016
  • The discovery of light emission in nanostructured silicon has opened up new avenues of research in nano-silicon based devices. One such pathway is the application of silicon quantum dots in advanced photovoltaic and light emitting devices. Recently, there is increasing interest on the silicon quantum dots (c-Si QDs) films embedded in amorphous hydrogenated silicon-nitride dielectric matrix (a-SiNx: H), which are familiar as c-Si/a-SiNx:H QDs thin films. However, due to the limitation of the requirement of a very high deposition temperature along with post annealing and a low growth rate, extensive research are being undertaken to elevate these issues, for the point of view of applications, using plasma assisted deposition methods by using different plasma concepts. This work addresses about rapid growth and single step development of c-Si/a-SiNx:H QDs thin films deposited by RF (13.56 MHz) and ultra-high frequency (UHF ~ 320 MHz) low-pressure plasma processing of a mixture of silane (SiH4) and ammonia (NH3) gases diluted in hydrogen (H2) at a low growth temperature ($230^{\circ}C$). In the films the c-Si QDs of varying size, with an overall crystallinity of 60-80 %, are embedded in an a-SiNx: H matrix. The important result includes the formation of the tunable QD size of ~ 5-20 nm, having a thermodynamically favorable <220> crystallographic orientation, along with distinct signatures of the growth of ${\alpha}$-Si3N4 and ${\beta}$-Si3N4 components. Also, the roles of different plasma characteristics on the film properties are investigated using various plasma diagnostics and film analysis tools.

  • PDF

Case Study of Cost Effect Analysis for Toxic Compounds to Developing Effluent Limitation Standards : Focus on 1,4-Dichlorobenzene (수질유해물질 배출허용기준 설정에 따른 배출시설 비용영향 분석사례 연구: 1,4-Dichlorobenzene을 중심으로)

  • Kim, Kyeongjin;Kim, Wongi;Heo, Jin;Kim, Kwangin;Kim, Jaehoon;Kim, Sanghun;Yeom, Icktae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.557-565
    • /
    • 2010
  • Recently, regulations on toxic compounds in aquatic environment have been strengthened in korea due to the increasing public awareness of the water quality. Typically, these regulations include introduction of emerging toxic compounds and stricter effluent limitations for the already regulated compounds. However, too strict regulations may cause excessive burden on the industry. Therefore it is also important to assess the economic impacts when the new effluent limitation guidelines are introduced. The estimation of the additional cost for the wastewater dischargers to meet the new guidelines are based on the selected treatment technology to handle the hazardous substances and the regulatory levels for effluent limitations. To explore the procedures for cost estimation in enforcing new effluent limitations, a case study was performed specially for 1,4-dichlorobenzene. The pollutants of concern are surveyed for different industrial categories and various treatment technologies. For a given pollutant, the general performances of the treatment technologies are surveyed and a representative technology is selected. For a given technology, the capital cost and annual Operation and Maintenance (O&M) cost was calculated. The calculation of baseline costs to operate ordinary treatment technologies is also important. The ratio between the cost for introducing new treatment process and the baseline cost required for conventional technology was used to evaluate the economic impact on the industry. For 1,4-dichlorobenzene, steam stripping and activated carbon processes were selected as the specific treatment technologies. The cost effects to the regulation of the compound were found to be 6.4% and 14.5% increase in capital cost and O&M cost, respectively, at the flow rate over $2,000m^3/d$ for the categories of synthetic resin and other plastics manufacturing industry. For the case of petrochemical basic compounds manufacturing industry, the cost increases were 5.8% and 12.4%, respectively. It was suggested that cost effect analysis to evaluate the economic impacts of new effluent limitations on the industry is crucial to establish more balanced and reasonable effluent limitations to manage the industrial wastewater containing emerging toxic compounds in the wastewater.

Key Bit-dependent Attack on Side-Channel Analysis-Resistant Hardware Binary Scalar Multiplication Algorithm using a Single-Trace (부채널 분석에 안전한 하드웨어 이진 스칼라 곱셈 알고리즘에 대한 단일 파형 비밀 키 비트 종속 공격)

  • Sim, Bo-Yeon;Kang, Junki;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.5
    • /
    • pp.1079-1087
    • /
    • 2018
  • Binary scalar multiplication which is the main operation of elliptic curve cryptography is vulnerable to the side-channel analysis. Especially, it is vulnerable to the side-channel analysis which uses power consumption and electromagnetic emission patterns. Thus, various countermeasures have been studied. However, they have focused on eliminating patterns of data dependent branches, statistical characteristic according to intermediate values, or the interrelationships between data. No countermeasure have been taken into account for the secure design of the key bit check phase, although the secret scalar bits are directly loaded during that phase. Therefore, in this paper, we demonstrate that we can extract secret scalar bits with 100% success rate using a single power or a single electromagnetic trace by performing key bit-dependent attack on hardware implementation of binary scalar multiplication algorithm. Experiments are focused on the $Montgomery-L{\acute{o}}pez-Dahab$ ladder algorithm protected by scalar randomization. Our attack does not require sophisticated pre-processing and can defeat existing countermeasures using a single-trace. As a result, we propose a countermeasure and suggest that it should be applied.

Development and Application of Mode II Fracture Toughness Test Method Using Rock Core Specimen (시추코어를 이용한 암석의 mode II 파괴인성 시험법 개발과 적용)

  • Jung, Yong-Bok;Park, Eui-Seob;Kim, Hyunwoo
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.396-408
    • /
    • 2016
  • Rock fracture mechanics has been widely applied to various fields of rock and civil engineering. But most researches covered mode I behavior, though mode II behavior is dominant in rock engineering. Until now, there is only one ISRM suggested method for mode II toughness of rock. A new SCC (Short Core in Compression) mode II toughness test method was developed considering 1) application of confining pressure, 2) easiness of notch creation, 3) utilization of existing equipment, 4) simple test procedure. The stress intensity factors were determined by 3D finite element method considering line and distributed loading conditions. The tests with granite specimens were carried out using MTS 815 rock test system with a loading rate of 0.002 mm/s. The mean value of mode II fracture toughness of granite showed $2.33MPa{\sqrt{m}}$. Mode I toughness of the same granite was $1.12MPa{\sqrt{m}}$, determined by Brazilian disk test and $K_{IIC}/K_{IC}=2.08$. The smooth fracture surface with rock powder formation also supported mode II behavior of SCC method. The SCC method can be used for the determination of mode II fracture toughness of rocks based on the current results.

Correlation of Breast Cancer Incidence with the Number of Motor Vehicles and Consumption of Gasoline in Korea

  • Park, Boyoung;Shin, Aesun;Jung-Choi, Kyunghee;Ha, Eunhee;Cheong, Hae-Kwan;Kim, Hyun Jeong;Park, Kyung Hwa;Jang, Sungmi;Moon, Byung-In;Ha, Mina
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.2959-2964
    • /
    • 2014
  • While several reproductive and lifestyle-related factors are already well-known as established risk factors for breast cancer, environmental factors have attracted attention only recently. The objective of the current study was to assess the association between the breast cancer incidences in females, the mortality rate and the number of motor vehicles on the one side and the consumption of gasoline which could work as a major source of air pollution at the other side. The breast cancer incidences and the mortality trends were compared with various indices of westernization like dietary patterns or industrialization with 10 years lag of time. Geographical variations with 10, 15 and 20 years lag of time were assessed between the breast cancer incidence in 2010 and the number of motor vehicles as well as the consumption of gasoline. The upward trend of motor vehicle numbers proved to be comparable to those of breast cancer incidence and mortality. However, the consumption of gasoline started to decrease since the mid-1990s. The geographic distribution of motor vehicle numbers and gasoline consumption in 1990 is in a positive correlation with the breast cancer incidence rates in 2010 and the 20-year lag time ($R^2$ 0.379 with the number of motor vehicles and 0.345 with consumption of gasoline). In a linear relationship between the breast cancer incidences in 2010 and the log transformed number of motor vehicles, the log transformed consumption of gasoline in 2000 also showed a positive relationship ($R^2$ 0.367 with the number of motor vehicles and 0.329 with consumption of gasoline). The results of the current study indicate that there may be a positive relation between the number of vehicles, gasoline consumption and the incidence of breast cancer from the aspects of long-term trends and geographical variation.