DOI QR코드

DOI QR Code

Development and Application of Mode II Fracture Toughness Test Method Using Rock Core Specimen

시추코어를 이용한 암석의 mode II 파괴인성 시험법 개발과 적용

  • 정용복 ;
  • 박의섭 (한국지질자원연구원 전략기술연구본부 심지층연구단) ;
  • 김현우 (한국지질자원연구원 전략기술연구본부 심지층연구단)
  • Received : 2016.08.29
  • Accepted : 2016.09.27
  • Published : 2016.10.31

Abstract

Rock fracture mechanics has been widely applied to various fields of rock and civil engineering. But most researches covered mode I behavior, though mode II behavior is dominant in rock engineering. Until now, there is only one ISRM suggested method for mode II toughness of rock. A new SCC (Short Core in Compression) mode II toughness test method was developed considering 1) application of confining pressure, 2) easiness of notch creation, 3) utilization of existing equipment, 4) simple test procedure. The stress intensity factors were determined by 3D finite element method considering line and distributed loading conditions. The tests with granite specimens were carried out using MTS 815 rock test system with a loading rate of 0.002 mm/s. The mean value of mode II fracture toughness of granite showed $2.33MPa{\sqrt{m}}$. Mode I toughness of the same granite was $1.12MPa{\sqrt{m}}$, determined by Brazilian disk test and $K_{IIC}/K_{IC}=2.08$. The smooth fracture surface with rock powder formation also supported mode II behavior of SCC method. The SCC method can be used for the determination of mode II fracture toughness of rocks based on the current results.

암석파괴역학은 토목공학과 암반공학의 다양한 분야에서 널리 적용되는 학문이다. 그러나 대부분의 암반 공학 문제에서 mode II 거동이 우세함에도 불구하고 관련 연구는 mode I 거동에 대한 것이 대부분이다. 현재 mode I의 경우 4개, mode II 파괴인성의 경우 단 한 개의 ISRM 표준시험법이 있다. 본 연구에서 제안하는 새로운 시험법은 문헌조사를 통해서 필요조건으로 구속압 가능 여부, 노치성형의 용이성, 기존 시험장비의 활용, 단순한 시험절차를 정하고 이에 부합하도록 개발하였으며 SCC(Short Core in Compression)로 이름을 정하였다. Mode II 파괴인성 계산에 필요한 응력확대계수 계산식을 3차원 수치해석을 통해 선하중과 분포하중 조건에 대해서 구하였고 노치성형을 위한 지그도 제작하였다. 개발된 시험법을 MTS 시스템을 사용하여 화강암에 적용하였으며 가압속도는 0.002 mm/s로 하였다. 시험 결과 $2.33MPa{\sqrt{m}}$의 mode II 파괴인성을 얻었다. 동일한 화강암 블록에서 확보한 시험편에 대하여 간접인장시험으로 구한 mode I 파괴인성은 $1.12MPa{\sqrt{m}}$였다. 따라서 $K_{IIC}/K_{IC}=2.08$로 mode II 파괴인성이 mode I보다 크게 나타났다. 또한 비교적 매끄러운 파괴면과 암분의 생성을 통하여 SCC 시험법이 mode II 거동을 잘 표현함을 확인하였다. 따라서 제안된 SCC 시험법은 암석의 mode II 파괴인성을 결정하는 데 사용할 수 있을 것으로 판단된다.

Keywords

References

  1. 한국암반공학회, 2010, 암석표준시험법, 도서출판 씨아이알, 123p.
  2. Backers T., Stephansson O., Rybacki E., 2002, Rock fracture toughness testing in Mode II-punch-through shear test, Int. J. Rock Mech. Min. Sci. 39, 755-769. https://doi.org/10.1016/S1365-1609(02)00066-7
  3. Fowell R.J., 1995, Suggested methods for determining mode I fracture toughness using cracked cheveron notched Brazilian disc specimens, Int. J. Rock Mech. Min. Sci. 32(1), 57-64. https://doi.org/10.1016/0148-9062(94)00015-U
  4. Guo H., Aziz N. and Schmidt L.C., 1993, Rock fracture-toughness determination by the Brazillian test, Engineering Geology, 33(3), 177-188. https://doi.org/10.1016/0013-7952(93)90056-I
  5. ISRM, 1979, Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int. J. Rock Mech. Min. Sci. 16, 135-140.
  6. ISRM, 1988, Suggested methods for determining the fracture toughness of rock, Int. J. Rock Mech. Min. Sci. 25(2), 71-96.
  7. ISRM, 2014, The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014, Springer, 293p.
  8. Jones D. and Chisholm D.B., 1975, An investigation of the edge-sliding mode in fracture mechanics, Eng. Fract. Mech., 7, 261-270. https://doi.org/10.1016/0013-7944(75)90007-7
  9. Ko, T.Y., 2008, Subcritical crack growth under mode I, II and III loading for conconino sandstone, Ph.D dissertation, The University of Arizona
  10. Laqueche H., RousseauA. and Valentin G., 1986, Crack propagation under mode I and mode II loading in slate schist, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 23(5), 347-354. https://doi.org/10.1016/0148-9062(86)90002-1
  11. Lee, K.S., Kim, J.S., Choi, H.J. and Lee, C.S., 2012, Quantitative Damage Assessment in KURT Granite by Acoustic Emission. Journal Of The Korean Society of Civil Engineers C, 32(6C), 305-314.
  12. Liu K., Barrt B.I.G. and Watkins J., 1985, Mode II fracture of fiber reinforced concrete materials, Int. J. Cement Composites and Lightweight Concrete, 7, 93-101. https://doi.org/10.1016/0262-5075(85)90064-8
  13. Owen D.R.J. and Fawkes A.J., 1983, Engineering Fracture Mechanics: Numerical Methods and Applications, Pineridge Press.
  14. Rao Q., Sun Z., Stephansson O., Li C. and Stillborg B., 2003, Shear fracture (Mode II) of brittle rock, Int. J. Rock Mech. Min. Sci. 40, 355-375. https://doi.org/10.1016/S1365-1609(03)00003-0
  15. Rinne M., 2008, Fracture Mechanics and Subcritical Crack Growth Approach to Model Time-dependent Failure in Brittle Rock, Doctoral Dissertation, Helsinki University.
  16. Shim, H.J. and Lee, C.I., 2000, A Study on the Measurement of Acoustic Emission and Deformation Behaviors of Rock and Concrete under Compression. Tunnel and Underground Space, 10(1), 59-69.
  17. Singh R.N. and Sun G.X., 1989, Relationship between fracture toughness, hardness indices and mechanical properties of rocks, Mining Department Magazine, XLI, 49-62.
  18. Vutukuri V.S., Lama R.D. and Saluja S.S., 1974, Handbook on mechanical properties of rocks, vol. I. Switzerland: Trans. Tech. Publications.
  19. Watkins J. and Liu K.L.W., 1985, A finite element study of the short beam test specimen under mode II loading, Int. J. Cem. Compos. Light. Concr. 7, 39-47. https://doi.org/10.1016/0262-5075(85)90025-9
  20. Whittaker B.N., Singh R.N. and Sun G., 1992, Rock Fracture Mechanics, Principles, Design and Applications, Developments in geotechnical engineering, Vol.71, Elsevier.
  21. Xu S. and Reinhardt H., 2005, Shear fracture on the basis of fracture mechanics, Otto-Graf-Journal, 16, 21-78.