• 제목/요약/키워드: variational characteristics

검색결과 124건 처리시간 0.027초

Semi-analytical solution for buckling of SMA thin plates with linearly distributed loads

  • Parizi, Fatemeh Salemizadeh;Mohammadi, Meisam
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.661-669
    • /
    • 2019
  • Buckling analysis of shape memory alloy (SMA) rectangular plates subjected to uniform and linearly distributed inplane loads is the main objective in the present paper. Brinson's model is developed to express the constitutive characteristics of SMA plate. Using the classical plate theory and variational approach, stability equations are derived. In addition to external inplane mechanical loads, the plate is subjected to the pre-stresses caused by the recovery stresses that are generated during martensitic phase transformation. Ritz method is used for solving the governing stability equations. Finally, the effects of conditions on the edges, thickness, aspect ratio, temperature and pre-strains on the critical buckling loads of SMA plate are investigated in details.

Large amplitude free torsional vibration analysis of size-dependent circular nanobars using elliptic functions

  • Nazemnezhad, Reza;Rabiei, Mohaddese;Shafa'at, Pouyan;Eshaghi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제77권4호
    • /
    • pp.535-547
    • /
    • 2021
  • This paper concerns with free torsional vibration analysis of size dependent circular nanobars with von kármán type nonlinearity. Although review of the literature suggests several studies employing nonlocal elasticity theory to investigate linear torsional behavior, linear/nonlinear transverse vibration and buckling of the nanoscale structures, so far, no study on the nonlinear torsional behavior of the nanobars, considering the size effect, has been reported. This study employs nonlocal elasticity theory along with a variational approach to derive nonlinear equation of motion of the nanobar. Then, the nonlinear equation is solved using the elliptic functions to extract the natural frequencies of the structure under fixed-fixed and fixed-free end conditions. Finally, the natural frequencies of the nanobar under different nanobar lengths, diameters, nonlocal parameters, and amplitudes of vibration are reported to illustrate the effect of these parameters on the vibration characteristics of the nanobars. In addition, the phase plane diagrams of the nanobar for various cases are reported.

자기장 및 열하중을 받는 복합재료 원통셸의 진동 및 안정성해석 (Vibration and Stability of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields)

  • 박상윤;강성환;서정석;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제23권9호
    • /
    • pp.797-805
    • /
    • 2013
  • In this paper vibration and stability analysis of laminated composite shells based on the first order shear deformation theory(FSDT) for two different boundary conditions(clamped-clamped, simply supported) are performed. Structural model of cross-ply symmetric laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations(Faraday, Ampere, Ohm, and Lorenz equations)and thermal equations which are involved in constitutive equations. Extended Galerkin method is adopted to obtain the discretized equations of motion. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, laminate thickness-ratio and radius ratio for two boundary conditions are investigated and pertinent conclusions are derived.

생성적 디자인을 이용한 가구디자인의 특성에 관한 연구 - 프랙탈 기하학과 보로노이 다이어그램을 적용한 가구디자인을 중심으로 - (A Study on the Characteristics of Furniture Design Using Generative Design - Focus on the Furniture Design using Fractal Geometry and Voronoi Diagram -)

  • 이진욱
    • 한국실내디자인학회논문집
    • /
    • 제20권1호
    • /
    • pp.89-97
    • /
    • 2011
  • Furniture design is no exception to human desire for pursuit of the nature. In various design fields, it has turned out nature-decorative method in the past, and also recently it has turned out bio-adaptive method which is more root design process using principal of generation in nature world. The purpose of this study is to analyze application methods and characteristics of fractal geometry and voronoi diagram which are most representative principals of generative design in nature by research on the example of furniture design using these principals. The results of having analyzed fumitures by generative design can be summarized as follows; design principals of fractal; superposition, scaling, repetition & gradation, deformation, distortion and voronoi diagram; individual speciation, variational patten, repetition gradation, ambiguous boundary create new design concept and emergent form in furniture design. Application methods are 'form emergence by algorithm', 'conventional process based on principals of generative design', and 'reproduction of pattern from generative design'. Biological reinterpretations and new explorations of principals of nature generation offer unbounded possibilities for furniture design.

Bi-S 쾌삭강의 칩생성특성 (Chip Forming Characteristics of Bi-S Free Machining Steel)

  • 조삼규
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.48-54
    • /
    • 2000
  • In this study the characteristics of chip formation of the cold drawn Bi-S free machining steels were assessed. And for comparison those of the cold drawn Pb-S free machining steel the hot rolled low carbon steel which has MnS as free machining inclusions and the conventional steels were also investigated. During chip formation the cold drawn free machining steels show relatively little change in thickness and width of chip compare to those of the conventional carbon steels. And a single parameter which indicates the degree of deformation during chip formation chip cross-section area ratio is introduced. The chip cross-section area ratio is defined as chip cross-section area is divided by undeformed chip cross-section area. The variational patters of the chip cross-section area ratio of the materials cut are similar to those of the shear strain values. The shear stress however seems to be dependent on the carbon content of the materials. The cold drawn Bi-S and Pb-S steels show nearly the same chip forming behaviors and the energy consumed during chip formation is almost same. A low carbon steel without free machining aids shows poor chip breakability due to its high ductility. By introducing a small amount of free machining inclusions such as MnS Bi, Pb or merely increasing carbon content the chip breakability improves significantly.

  • PDF

An analytical solution to the vibration characteristics for continuous girder bridge-track coupling system and its application

  • Feng, Yulin;Jiang, Lizhong;Zhou, Wangbao;Zhang, Yuntai;Liu, Xiang
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.601-612
    • /
    • 2021
  • To study the vibration characteristics of a high-speed railway continuous girder bridge-track coupling system (HSRCBT), a coupling vibration analysis model of an m-span continuous girder bridge-subgrade-track system with n-span approach bridge was established. The model was based on the energy and its variational method, where both the interlaminar slip and shear deformation effects were considered. In addition, the free vibration equations and natural boundary conditions of the HSRCBT were derived. Further, according to the coordination principle of deformation and mechanics, an analytical method for calculating the natural vibration frequencies of the HSRCBT was obtained. Three typical bridge-subgrade-track coupling systems of high-speed railway were taken and the results of finite element analysis were compared to those of the analytical method. The errors between the simulation results and calculated values of the analytical method were less than 3%, thus verifying the analytical method proposed in this paper. Finally, the analytical method was used to investigate the influence of the number of the approach bridge spans and the interlaminar stiffness on the natural vibration characteristics of the HSRCBT based on the degree of sensitivity. The results suggest the approach bridges have a critical number of spans and in general, the precision requirements of the analysis could be met by using 6-span approach bridges. The interlaminar vertical compressive stiffness has very little influence on the low-order natural vibration frequency of HSRCBT, but does have a significant influence on higher-order natural vibration frequency. As the interlaminar vertical compressive stiffness increases, the degree of sensitivity to interlaminar stiffness of each of the HSRCBT natural vibration characteristics decrease and gradually approach zero.

연료과농 조건에서의 기체메탄-기체산소 반응물의 연소특성 (Combustion Characteristics of the Gaseous-methane & Gaseous-oxygen Reactants under Highly Fuel-rich Conditions)

  • 강윤형;안현종;배창한;김정수
    • 한국추진공학회지
    • /
    • 제25권6호
    • /
    • pp.45-52
    • /
    • 2021
  • 본 연구에서는 액체 추진제 소형로켓엔진의 개발을 위한 선행연구로 연료과농 조건의 기체메탄-기체산소 연소시험 결과를 제시한다. 다양한 당량비에 대한 연소특성을 비교하기 위해 산소 공급 유량을 12 g/s로 설정하고 메탄 공급 유량을 변화시켰다. 시험 결과, 연소시험 중 형성되는 정상상태 특성속도가 후반에서 급작스럽게 증가하는 현상이 관측되었으며, 그 변화량은 당량비에 비례하여 커지는 경향을 확인할 수 있었다. 이를 바탕으로 특성속도의 변이특성에 종속하는 당량비 구간을 총 3가지 연소 범주로 구분하였다.

인장계류식 해양구조물의 구조응답에 미치는 굽힘강성의 영향 (Effects of the Flexibility on the Structural Responses of a Tension Leg Platform)

  • 이창호;이수룡
    • 한국해양공학회지
    • /
    • 제21권4호
    • /
    • pp.38-44
    • /
    • 2007
  • The structural response characteristics of Tension leg platforms(TLPs) in waves are examined for presenting the basic data for structural design of TLPs. The numerical approach is based on a combination of the three dimensional source distribution method and the structural response analysis method, in which the superstructure of TLP is assumed to be flexible instead of rigid. Hydrodynamic and hydrostatic forces on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in structural analysis. The mooring forces are estimated as the sum of pretension of tendons and variational tension due to longitudinal displacements. Stiffness matrices of elastic beam elements connecting nodes are formulated by ordinary method of three dimensional frame analysis. The equation of motion about the whole structure is obtained by the sum of forces and moments acting on each nodes.

집중 질량을 갖는 폭 변단면 외팔보의 굽힘 진동 해석 (Bending Vibration Analysis of Width Tapered Beams with Concentrated Tip Mass)

  • 이정우;곽종훈;이정윤
    • 한국소음진동공학회논문집
    • /
    • 제25권12호
    • /
    • pp.822-829
    • /
    • 2015
  • A transfer matrix method has been developed to determine the more accurate natural frequencies for the bending vibration of Bernoulli-Euler beam with linearly reduced width and a concentrated tip mass. The proposed method can be computed an infinite number of the natural frequencies using a single element. Using the differential equation, shear force, and bending moment in which can be deduced by the diverse variational principles, a transfer matrix is formulated. The roots of the differential equation are computed by the Frobenius method. The effect of the concentrated mass for the natural frequencies of width-tapered beams is examined through a parametric study, and to show the accuracy of the proposed method, the computed results compared with those obtained from commercial finite element analysis program(ANSYS).

벌칙방법에 의한 마찰 접촉문제의 강소성 유한요소 모델링 (Rigid-Plastic FE Modeling of Frictional Contact Problems based on a Penalty Method)

  • 장동환;황병복
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.34-42
    • /
    • 2003
  • This paper presents a rigid-plastic finite element method to handle the frictional contact problem between two deformable bodies experiencing large deformation. The variational formulation combined with incremental quasi-static model is employed for treating the contact boundary condition. The frictional behavior of the model obeys Coulomb's law of friction. The proposed contact algorithms are classified into two categories, one for searching contacting nodes and the other for calculating contact forces at the contact surface. A slave node and master contact segment are defined using the geometric condition of finite elements on the contact interface. The penalty parameter is used to limit the penetration between contacting bodies, and the finite elements are coupled with contact boundary elements.us gates and cavity thicknesses. Through this study we have observed that the jetting is related to the die swell of material. This means that the jotting is strongly affected by the elastic flow property rather than the viscous flow property in viscoelastic characteristics of molten polymer. Different resins have different elastic properties, and elastic flow behavior depends on the shear rate of flow, i.e. injection speed. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mole design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting regardless of amount of elasticity of polymer melt.