• Title/Summary/Keyword: variable pendulum

Search Result 51, Processing Time 0.023 seconds

Cyclic behavior of DCFP isolators with elliptical surfaces and different frictions

  • Abdollahzadeh, Gholamreza;Darvishi, Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.731-736
    • /
    • 2017
  • Friction Pendulum isolators are tools developed in the past few decades. The simplest form of these isolators, are FPS whose main disadvantages are having a constant frequency independent of the frequency of the structure. For this reason, researchers have invented VFPI isolator whose frequency is variable and depends on displacement. Another friction pendulum isolator is DCFP isolator which is a combination of two FPS isolators. In this article, first by changing the geometry of DCFP isolator plates from spherical to elliptical, the motion and frequency equations of DVFPI isolators are defined, and then the seismic behavior of DVFPI isolators are analyzed in various geometric and plate friction settings using motion equations, and confirmed using ABAQUS software. The most important results of this study are that the hysteresis behavior of DVFPI isolators are severely nonlinear, its curve follows two distinct curvatures, and that the restoring force is faced with softening mechanism that limits the seismic force transmitted to the structure, whereas the restoring force in DCFP isolators increases linearly with increasing displacement.

Trajectory Study of Self-organizing Fuzzy Control and Its Application to Inverted Pendulum Control (자기구성 퍼지네어의 궤적연구 및 도립진자 제어 적용)

  • 박정일;류재규
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.35-44
    • /
    • 1994
  • In this paper, we propose a new modification method of the look-up table in self-organizing fuzzy control using look-up table. This method has the property that look-up table is modified to have fast response property. Its principle is that the controller forces the trajectory to go into the fast respose region which the error change amount is larger than the error at initial time whenever the reference or disturbance change. Also we introduce the variable learning speed coefficient which is proportional to distance from switching curve. And to demonstrate the applicability of the proposed method, we had simulation study for some examples and esecuted pole balance experiments with inverted pendulum.

  • PDF

Implementation of Evolving Neural Network Controller for Inverted Pendulum System (진화형 신경회로망에 의한 도립진자 제어시스템의 구현)

  • Shim, Young-Jin;Kim, Min-Sung;Park, Doo-Hwan;Choi, Woo-Jin;Ha, Hong-Gon;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3013-3015
    • /
    • 2000
  • The stabilization control of Inverted Pendulum(IP) system is difficult because of its nonlinearity and structural unstability. Futhermore, a series of conventional techniques such as the pole placement and the optimal control based on the local linearizations have narrow stabilizable regions, At the same time, the fine tunings of their gain parameters are also troublesome, Thus, in this paper, an Evolving Neural Network ControlleY(ENNC) which its structure and its connection weights are optimized simultaneously by Real Variable Elitist Genetic Algorithm (RVEGA) was presented for stabilization of an IP system with nonlinearity, This proposed ENNC was described by a simple genetic chromosome. Through the simulation and experimental results, we showed that the finally acquired optimal ENNC was very useful in the stabilization control of IP system.

  • PDF

Alternate Energy: Gravity Powered Rail Transportation Systems

  • Bojji, Rajaram
    • International Journal of Railway
    • /
    • v.2 no.1
    • /
    • pp.22-29
    • /
    • 2009
  • A simple pendulum shows how efficient gravity is in recovering energy. Any transportation is a linearly oscillating system; every load gains kinetic energy, but loses the same to come to a stop. The Gravity Power Towers comprise of a set of vertically moving heavy masses coupled, through microprocessor controlled continuously variable gear and cable system, to a horizontally rolling unit on wheels either on rail or road. The heavy masses move vertically up against gravity gaining potential energy while stopping a moving mass; move down under gravity force, giving out energy. The Tower thus accelerates or sustains the speed a rolling unit, and while decelerating, recover the kinetic energy. Speeds of 360 kmph can be attained. Recovery of energy varies from 98.5-70%; the longer the distance between stops, the lesser is recovery. The economical, omnipresent & eternal Gravity Power grants energy independence to many a nation. Global warming reduces.

  • PDF

Implementations of the variable structure control system using neural networks (신경회로망을 이용한 가변 구조 제어 시스템의 구현)

  • Yang, Oh;Yang, Hai-Won
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.124-133
    • /
    • 1996
  • This paper presents the implementation of variable structure control system for a linear or nonlinear system using neural networks. The overall control system consists of neural network controller and a reaching mode controller. While the former approximates the equivalent control input on the sliding surface, the latter is used to bring the entire system trajectories toward the sliding surface. No supervised learning procedures are needed and the weights of the neural network are tuned on-line automatically. The neural netowrk-based variable structure control system is applied to a nonlinare unstable inverted pendulum system through computer simulations, and implemented using a microcomputer (80486-50MHz) and applied to the DC servomotor position control system. Simulation and experimental results show the expected approximation sliding property is occurred. The proposed controller is compared with a PID controller and shows better performance than the PID controller in abrupt plant parameter change.

  • PDF

Robust Control Design for a Two-Wheeled Inverted Pendulum Mobile Robot (이륜 도립진자 이동로봇을 위한 강인제어기 설계)

  • Yoo, Dong Sang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.16-22
    • /
    • 2016
  • The research on two-wheeled inverted pendulum (TWIP) mobile robots has been ongoing in a number of robotic laboratories around the world. In this paper, we consider a robust controller design for the TWIP mobile robot driving on uniform slopes. We use a 2 degree-of-freedom (DOF) model which is obtained by restricting the spinning motion in a 3 DOF motion dynamic equation. In order to design the robust controller guaranteeing stability of the TWIP mobile robot driving on inclined surface, we propose a sliding mode control based on the theory of variable structure systems and design a sliding surface using the theory of the linear quadratic regulation (LQR). For simulation, the dynamic model of the TWIP mobile robot is constructed using Mathworks' Simulink and the sliding mode control is also implemented using Simulink. From simulation results, we show that the proposed controller effectively controls the TWIP mobile robot driving on slopes.

Container Crane Control: Modified Time-Optimal Traveling Followed by Nonlinear Residual Sway Control (컨테이너 기중기의 제어 : 수정된 시간최적주행과 비선형 잔류흔들림 제어)

  • Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.630-639
    • /
    • 1999
  • To achieve fast loading and unloading of containers from a container ship, quick suppression of the remaining sway motion of the container at the end of each trolley stroke is crucial. Due to the pendulum motion of the container and disturbances like sind, residual sway always exists at the end of trolley movement. In this paper, the sway-control problem of a container crane is investigated. A two-stage control is proposed. The first stage is a time optimal controlfor the purpose of fast trolley traveling. The second stage is a nonlinear control for the quick suppression of residual sway, which starts right after the first stage while lowering the container. The nonlinear control is investigated in the perspective of controlling an underatuated mechanical system, which combines partial feedback linearization to account for the known nonlinearities as much as possible, and variable structure control to account for the unmodeled dynamics and disturbances. Simulation and experimental results are provided.

  • PDF

Design of a Variable Structure Controller Using Nonlinear Fuzzy Sliding Surfaces (비선형 퍼지 슬라이딩면을 이용한 가변구조 제어기의 설계)

  • 이희진;손홍엽;김은태;조영환;박민용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.449-452
    • /
    • 1997
  • In this paper, we suggest a variable structure controller using the time-varying nonlinear sliding surface instead of the fixed sliding surface, which has been the robustness against parameter variations and extraneous disturbance during the reaching phase. As appling TS fuzzy algorithm to the regulation of the nonlinear sliding surface, the reaching time of the system trajectory is faster than the fixed method . This proposed scheme has better performance than the conventional method in reaching time parameter variation and extraneous disturbance. To demonstrate its performance, the proposed control algorithm is applied to a rotational inverted pendulum.

  • PDF

Design of a Variable Structure Controller with Nonlinear Fuzzy Sliding Surgaces (비선형 퍼지 슬라이딩면을 갖는 가변 구조 제어기의 설계)

  • 이희진;강형진;김정환;박민용
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.21-28
    • /
    • 1998
  • This study develops a variable structure controller using the time-varying nonlinear sliding surface instead of the fixed sliding surface, which has been the robustness against parameter variations and extraneous disturbance during the reaching phase. By appling TS fuzzy algorithm to the regulation of the rionlinear sliding surface, the reaching time of the system trajectory is faster than the fixed method. This proposed scheme has better performance than the conventional method in reaching time, parameter variation and extraneous disturbance. To demonstrate its performance, the proposed control algorithm is applied to a rotational inverted pendulum.

  • PDF

A Study on the Adaptive Fuzzy Nonlinear VSS (비선형 슬라이딩 면을 가지는 적응 퍼지 제어기 설계)

  • 이대식;김혜경
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.788-792
    • /
    • 2001
  • Although the general sliding model control has the robust property, bounds on the disturbances and parameter variations should be known a prior to the designer of the control system. However, these bounds may not be easily obtained. Fuzzy logic provides an effective way to design a controller of the system with disturbances and parameter variations. Therefore, combination of the best feature of the fuzzy logic control and the sliding mode control is considered. In this paper, the adaptive fuzzy variable structure controller developed for variables of fuzzy logic. A variable length pendulum system is used to demonstrate the availability of the proposed algorithm.

  • PDF