• Title/Summary/Keyword: vapor chamber

Search Result 240, Processing Time 0.021 seconds

Analysis of the thermal management of a high power LED package with a heat pipe

  • Kim, Jong-Soo;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.96-101
    • /
    • 2016
  • The thermal management of high-power LED components in an assembly structure is crucial for the stable operation and proper luminous function. This study employs numerical tools to determine the optimum thermal design in LEDs with a heat sink consisting of a crevice-type vapor-chamber heat pipe. The effects of the MCPCB are investigated in terms of the substrate thicknesses on which the LEDs are mounted. Further, different placement configurations in a system module are considered. This study found that for a confined area, a power of 40 W/LED is applicable to a high-power package. Furthermore, the thermal conductivity of dielectric layer materials should ideally be greater than 0.9 W/m.K. The temperature conditions of the vapor chamber in a heat pipe greatly affect the thermal performance of the system. At an offset distance of 9.0 mm and a $2^{\circ}C$ increase in the temperature of the heat pipe, the resulting maximum temperature increase is approximately $1.9^{\circ}C$ for each heat dissipation temperature. Finally, at a thermal conductivity of 0.3 W/m.K, it was found that the total thermal resistance changes dramatically. Above 1.2 W/m.K, the resistance change reduces exponentially.

A Study on the Thermal Characteristics Comparison of the LED Floodlight Luminaire using Vapor Chamber Manufacturing Technology (베이퍼챔퍼 제조기술을 적용한 LED 투광등기구의 열 특성 비교에 관한 연구)

  • Seo, Jin-Kook;Yu, Young-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • The purpose of this paper is to analyze thermal characteristics of the heat sinks to maximize the thermal diffusivity for LED floodlight. The 2 kind of samples were prepared by vapor chamber manufacturing technology using the heat pipe principle. It was analyzed the maximum temperature reduction effect and the thermal diffusion from the heat source depending on the types of chambers with 3 kind of working fluids. As a result, it was confirmed that thermal conductivity 23% increased, GVC-R type than IVC-R type.

Quantitative Vapor Phase Exciplex Fluorescence Measurements at High Ambient Temperature and Pressure

  • Kim, Tongwoo;Jaal B. Ghandhi
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.157-167
    • /
    • 2003
  • The exciplex fluorescence technique with the TMPD (tetamethyl-Ρ-phenylene-diamine) / naphthalene dopant system was applied in a combustion-type constant-volume spray chamber. A detailed set of calibration experiments has been performed in order to quantify the TMPD fluorescence signal. It has been demonstrated that the TMPD fluorescence intensity was directly proportional to concentration, was independent of the chamber pressure, and was not sensitive to quenching by either water vapor or carbon dioxide. Using a dual heated-jet experiment, the temperature dependence of TMPD fluorescence up to 1000 K was measured. The temperature field in the spray images was determined using a simple mixing model, and an iterative solution method was used to determine the concentration and temperature field including the additional effects of the laser sheet extinction. The integrated fuel vapor concentration compared favorably with the measured amount of injected fuel when all of the liquid fuel had evaporated.

The Effect of Impinging Land Size on Diesel Spray Behavior in OSKA Type Combustion Chamber (OSKA형 연소실에서 충돌면크기변화가 디젤분무거동에 미치는 영향)

  • 임덕경;박권하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.18-26
    • /
    • 2001
  • OSKA engine was developed to remove the dense core of injection sprays. The engine uses impinging spray on a small pip, which spray after impinging is broken into smaller drops and disperses into fee space in chamber. In this paper the pip size is analyzed to give more dispersion of spray and fuel vapor. The gas phase is modelled by the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach in Lagrangian form, and the droplet wall interaction is modelled as a function of the velocity normal to impaction lands. The droplet distributions, vapor fractions and gas flows are analyzed for various injection pressure cases. Numerical results indicate that the land diameter of 5.6mm has the best performance of spray dynamics and vaporization in the test sizes.

  • PDF

Performance evaluation by flow channel effect for a passive air-breathing Direct Methanol Fuel Cell (수동급기 직접 메탄올 연료전지의 유로에 따른 성능 평가)

  • Chang, Ikw-Hang;Ha, Seung-Bum;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.45-48
    • /
    • 2008
  • This paper presents a passive air-breathing direct methanol fuel cell (DMFC) which has been designed and tested. The single cell is fuelled by methanol vapor that is supplied through flow channel from a methanol reservoir at the anode, and the oxygen is supplied via natural air-breathing at the cathode. The methods for supplying the methanol vapor to the single cell were parallel channel and chamber. This research investigates various methods to identify the effects of using flow channels for providing the methanol vapor at the anode, and the opening ratio between the inlet and outlet ports for the methanol flow at the anode. The best flow channel condition for passive DMFC was a chamber, and the opening ratio was 0.8. Under these conditions, the peak power was 10.2mW/$cm^2$ at room temperature and ambient pressure. The key issues for the Passive DMFCs for using methanol vapor are that sufficient methanol needs to be supplied using a large as possible opening ratio. However, it is shown that the performance of the passive DMFC, which has a channel at the anode,is low due to the low differential pressure and insufficient methanol supply rate.

  • PDF

Concept Design of Hydro Reactive Solid Propellant for Underwater High Speed Ramjet Engine System (수(水)반응성 고체추진제를 이용한 수중고속램제트엔진 시스템 개념 설계)

  • Chae Jae-Ou;Sim Ju-Hyen;Kwak Yong-Whan;Koo Hyung-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.121-131
    • /
    • 2005
  • For thrust motion of high speed underwater torpedo the special hydro reactive fuels that burns in vapor water and water supply from aboard is used. The main component of this hydro reactive fuel is the powder of active metal (Mg, Al) that can burn in water vapor with large heat generation in the rocket combustion chamber. The thermodynamic analysis of combustion properties of the burning of the particles of these active metal in the vapor water have been carried out. The conception for the possible content variants of the hydro reactive fuels have been discussed using the geometrical and thermodynamic combustion conditions with the basic recommendation for contents of designed hydro reactive fuels in future.

  • PDF

Structure of Deposition Chamber using Belt Source Evaporation Techniques in AMOLED Manufacturing

  • Hwang, Chang-Hun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.186-189
    • /
    • 2007
  • The organic deposition chamber has been developed using belt source evaporation techniques for the first time. The deposition chamber is consisted of the belt source, organic vapor source, and the mask alignment assembly. The rollers operate for the thin metal belt to continuously move with the automatic tension control. It has been proved for the belt source evaporation easy to operate and the alignment of the substrate/shadow mask becomes so simple to use in AMOLED manufacturing industry.

  • PDF

A Study on Various Parameters of the PE-CVD Chamber with Wafer Guide Ring (웨이퍼 가이드링 적용에 따른 PE-CVD 챔버 변수에 대한 연구)

  • Hyun-Chul Wang;Hwa-Il Seo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.55-59
    • /
    • 2024
  • Plasma Enhanced Chemical Vapor Deposition (PE-CVD) is a widely used technology in semiconductor manufacturing for thin film deposition. The implementation of wafer guide rings in PE-CVD processes is crucial for enhancing efficiency and product quality by ensuring uniform deposition around wafer edges and reducing particle generation. On the other hand, to prevent overall temperature non-uniformity and degradation of thin film quality within the chamber, it is essential to consider various parameters comprehensively. In this study, after applying the wafer guide rings, temperature variations and fluid flow changes were simulated. Additionally, by simulating the temperature and flow changes when applied to the PE-CVD chamber, this paper discusses the importance of optimizing variables within the entire chamber.

  • PDF

Status Change Monitoring of Semiconductor Plasma Process Equipment (주파수 도메인 반사파 측정법을 이용한 플라즈마 공정장비 상태변화 연구)

  • Yunsang Lee;Sang Jeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.52-55
    • /
    • 2024
  • In this paper, a state change study was conducted through Frequency Domain Reflectometry (FDR) technology for the process chamber of plasma equipment for semiconductor manufacturing. In the experiment, by direct connecting the network analyzer to the RF matcher input of the 300 mm plasma enhanced chemical vapor deposition (PECVD) chamber, S11 was measured in a situation where plasma was not applied, and the frequency domain reacting to the chamber state change was searched. Response factors to changes in the status, such as temperature, spacing of the heating chuck, internal pressure difference, and process gas supply state were confirmed. Through this, the frequency domain in which a change in the reflection value was detected through repeated experiments. The reliability of the measured micro-displacement was verified through reproducibility experiments.

  • PDF

Study for an BF3 Specialty Gas Production (BF3 생산에 관한 연구)

  • Lee, Taeck-Hong;Kim, Jae-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.74-78
    • /
    • 2011
  • $BF_3$ gas has been used for semiconductor manufacturing process and applied in plasma etching, chemical vapor deposition, chamber cleaning processes etc,. $BF_3$ provides Boron and acts as a p-type doping in electrode in semiconductor. In this study, we investigate thermaldecomposition of alkali-boron complexes and suggest a simple way to produce $BF_3$ from $NaBF_4$ and $KBF_4$.