• Title/Summary/Keyword: valence state

Search Result 146, Processing Time 0.027 seconds

Effect of Transition Metal Dopant on Electronic State and Chemical Bonding of MnO2 (MnO2의 전자상태 및 화학결합에 미치는 천이금속 첨가의 효과)

  • 이동윤;김봉서;송재성;김양수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.691-696
    • /
    • 2004
  • The electronic state and chemical bonding of $\beta$-MnO$_2$ with transition metal dopants were theoretically investigated by DV-X$_{\alpha}$ (the discrete variational X$_{\alpha}$) method, which is a sort of the first principles molecular orbital method using the Hartree-Fock-Slater approximation. The calculations were performed with a $_Mn_{14}$ MO$_{56}$ )$^{-52}$ (M = transition metals) cluster model. The electron energy level, the density of states (DOS), the overlap population, the charge density distribution, and the net charges, were calculated. The energy level diagram of MnO$_2$ shows the different band structure and electron occupancy between the up spin states and down spin states. The dopant levels decrease between the conduction band and the valence band with the increase of the atomic number of dopants. The covalency of chemical bonding was shown to increase and ionicity decreased in increasing the atomic number of dopants. Calculated results were discussed on the basis of the interaction between transition metal 3d and oxygen 2p orbital. In conclusion it is expected that when the transition metals are added to MnO$_2$ the band gap decreases and the electronic conductivity increases with the increase of the atomic number of dopants. the atomic number of dopants.

A Study of the Structure and Luminescence Properly of BaMgAl10O17:Eu2+ Blue Phosphor using Scattering Method (Scattering법을 이용한 BaMgAl10O17:Eu2+ 청색형광체의 구조와 발광특성 연구)

  • 김광복;김용일;구경완;천희곤;조동율
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.67-74
    • /
    • 2002
  • A phosphor for Plasma Display Panel, BaMgAl$_{10}$ O$_{17}$ :Eu$^{2+}$, showing a blue emission band at about 450nm was prepared by a solid-state reaction using BaCO$_3$, $Al_2$O$_3$, MgO, Eu$_2$O$_3$ as starting materials wish flux AlF$_3$. The study of the behaviour of Eu in BAM phosphor was carried out by the photoluminescence spectra and the Rietveld method with X-ray and neutron powder diffraction data to refine the structural parameters such as lattice constants, the valence state of Eu, the preferential site of Mg atom and the site fraction of each atom. The phenomenon of the concentration quenching was abound 2.25~2.3wt% of Eu due to a decrease in the critical distance for energy transfer of inter-atomic Eu. Through the combined Rietveld refinement, R-factor, R$_{wp}$, was 8.11%, and the occupancy of Eu and Mg was 0.0882 and 0.526 at critical concentration. The critical distance of Eu$^{2+}$ in BAM was 18.8$\AA$ at 2.25% Eu of the concentration quenching. Furthermore, c/a ratio was decreased to 3.0wt% and no more change was observed over that concentration. The maximum entropy electron density was found that the modeling of $\beta$-alumina structure in BaMgAl$_{10}$ O$_{17}$ :Eu$^{2+}$correct coincided showing Ba, Eu, O atoms of z= 1/4 mirror plane.e.ane.e.

In-situ Synchrotron Radiation Photoemission Spectroscopy Study of Properties Variation of Ta2O5 Film during the Atomic Layer Deposition

  • Lee, Seung Youb;Jeon, Cheolho;Jung, Woosung;Kim, Yooseok;Kim, Seok Hwan;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.283.2-283.2
    • /
    • 2013
  • The variation of chemical and interfacial state during the growth of Ta2O5 films on the Si substrate by atomic layer deposition (ALD) was investigated using in-situ synchrotron radiation photoemission spectroscopy. A newly synthesized liquid precursor Ta(NtBu)(dmamp)2Me was used as the metal precursor, with Ar as a purging gas and H2O as the oxidant source. The core-level spectra of Si 2p, Ta 4f, and O 1s revealed that Ta suboxide and Si dioxide were formed at the initial stages of Ta2O5 growth. However, the Ta suboxide states almost disappeared as the ALD cycles progressed. Consequently, the Ta5+ state, which corresponds with the stoichiometric Ta2O5, only appeared after 4.0 cycles. Additionally, tantalum silicate was not detected at the interfacial states between Ta2O5 and Si. The measured valence band offset value between Ta2O5 and the Si substrate was 3.08 eV after 2.5 cycles.

  • PDF

Structural and Electrical Properties of (La,Nd,Sr)MnO3 Ceramics for NTC Thermistor Devices

  • Shin, Kyeong-Ha;Park, Byeong-Jun;Lim, Jeong-Eun;Lee, Sam-Haeng;Lee, Myung-Gyu;Park, Joo-Seok;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.292-296
    • /
    • 2022
  • (La0.5Nd0.2Sr0.3)MnO3 specimens were prepared by a solid-state reaction. In all specimens, X-ray diffraction patterns of an orthorhombic structure were shown. The fracture surfaces of (La0.5Nd0.2Sr0.3)MnO3 specimens showed a transgranular fracture pattern be possibly due to La ions (0.122 nm) as a perovskite A-site dopant substituting for Nd ions (0.115 nm) having a small ionic radius. The full-width at half maximum (FWHM) of the Mn 2p XPS spectra showed a value greater than that [8] of the single valence state, which is believed to be due to the overlapping of Mn2+, Mn3+, and Mn4+ ions. The dependence of Mn 2p spectra on the Mn3+/Mn4+ ratio according to sintering time was not observed. Electrical resistivity resulted in the minimum value of 100.7 Ω-cm for the specimen sintered for 9 hours. All specimens show a typical negative temperature coefficient of resistance (NTCR) characteristics. In the 9-hour sintered specimen, TCR, activation energy, and B25/65-value were -1.24%/℃, 0.19 eV, and 2,445 K, respectively.

Synthesis and Densification Behavior of Al Doped (La0.8Ca0.2)(Cr0.9Co0.1)O3(LCCC) Ceramics for SOFC Interconnects (SOFC 연결재용 Al이 도핑된 (La0.8Ca0.2)(Cr0.9Co0.1)O3(LCCC)계 세라믹스의 합성 및 치밀화 특성)

  • Lee, Ho-Young;Kang, Bo-Kyung;Lee, Ho-Chang;Heo, Young-Woo;Kim, Jeong-Joo;Kim, Jae-Yuk;Lee, Joon-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.392-397
    • /
    • 2012
  • In the $(La_{0.8}Ca_{0.2})(Cr_{0.9}Co_{0.1})O_3$ (LCCC), which has been using as interconnector materials in SOFC, Al ions were substituted for Co because ionic radius of Al is similar to that of Co. Because of the almost identical ionic radius of Al and Co, the substitution was not thought to be affect the tolerance factor of LCCC, and the densification behavior, high temperature electrical conductivity and thermal expansion coefficient were examined as a function of Al concentration. In the cases of the x= 0 and x= 0.02 in $(La_{0.8}Ca_{0.2})(Cr_{0.9}Co_{0.1-x}Al_x)O_3$ (x= 0~0.1), the samples showed the relative densities above ${\geq}95%$ when those were sintered at ${\geq}1,350^{\circ}C$. In the case of the $x{\geq}0.06$ the sintered density deteriorated greatly at lower sintering temperatures. High temperature electrical conductivity of the samples decreased as the content of Al increased. Since the valence state of Al ion is unchangeable, while Cr or Co ions contribute to the electrical conduction by changing those valence states, Al substitution resulted in the decreased electrical conductivity. Al doping of LCCC was an effective way of decreasing the thermal expansion coefficient (TEC).

Physical Properties of the Nonstoichiometric Perovskite $Dy_{1-x}Sr_xCoO_{3-y}$ System

  • 정수경;김민규;김규홍;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.794-798
    • /
    • 1996
  • Solid solutions of the nonstoichiometric Dy1-xSrxCoO3-y system with the compositions of x=0.00, 0.25, 0.50, 0.75, and 1.00 have been synthesized by the solid state reaction at 1000 ℃ under atmospheric air pressure. The crystallographic structures of the solid solutions are analyzed by the powder X-ray diffraction patterns at room temperature. The analyses assign the compositions of x=0.00 and 0.25 to the orthorhombic system with space group of Pbnm/D2h16, the compositions of x=0.50 and 0.75 to the tetragonal system like a typical SrCoO2.86, and the composition of x=l.00 or SrCoO2.50 to the brownmillerite type system with space group of I**a. The reduced lattice volumes increase with x value due to the larger radius of Sr2+ ion than that of Dy3+ ion. The mole ratio of Co4+ ion to total Co ion with mixed valence state between Co3+ and Co4+ ions at B sites or τ value has been determined by an iodometric titration. All the samples except for the DyCoO3 compound show the mixed valnce state and thus the composition of x=0.50 has the maximum τ value in the system. The oxygen vacancies increasing with x value are randomly distributed over the crystal lattice except for the composition of x=l.00 which have the ordering of the oxygen vacancies. The nonstoichiometric chemical formulas of the Dy1-xSrxCo3+1-τCo4+τO3-(x-τ)/2 system are formulated from the x, τ, and y values. The electrical conductivity in the temperature range of 100 to 900 K increases with τ value linearly because of positive holes of the Co4+ ions in π* band as a conducting carrier. The activation energy of the x=0.50 as Ea=0.17 eV is minimum among other compouds. Broad and high order transition due to the overlap between σ* and π* bands broadened by the thermal activation is observed near 1000 K and shows a low temperature-semiconducting behavior. Magnetic properties following the Currie-Weiss law show the low to high spin transition in the cobaltate perovskite. Especially, the composition of x=0.75 presents weak ferromagnetic behavior due to the Co3+-O2--Co4+ indirect superexchange interaction.

Synthesis and Characterization of Sm2O3 Doped CeO2 Nanopowder by Reverse Micelle Processing (역마이셀을 이용한 Sm2O3 도핑 CeO2 나노분말의 합성 및 특성)

  • Kim, Jun-Seop;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.207-210
    • /
    • 2012
  • The preparation of $Sm_2O_3$ doped $CeO_2$ in Igepal CO-520/cyclohexane reverse micelle solutions has been studied. In the present work, we synthesized nanosized $Sm_2O_3$ doped $CeO_2$ powders by reverse micelle process using aqueous ammonia as the precipitant; hydroxide precursor was obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase, and poly (xoyethylene) nonylphenylether (Igepal CO-520) as the non-ionic surfactant. The synthesized and calcined powders were characterized by Thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), and Transmission electron microscopy (TEM). The crystallite size was found to increase with increase in water to surfactant (R) molar ratio. Average particle size and distribution of the synthesized $Sm_2O_3$ doped $CeO_2$ were below 10 nm and narrow, respectively. TG-DTA analysis shows that phase of $Sm_2O_3$ doped $CeO_2$ nanoparticles changed from monoclinic to tetragonal at approximately $560^{\circ}C$. The phase of the synthesized $Sm_2O_3$ doped $CeO_2$ with heating to $600^{\circ}C$ for 30 min was tetragonal $CeO_2$. This study revealed that the particle formation process in reverse micelles is based on a two step model. The rapid first step is the complete reduction of the metal to the zero valence state. The second step is growth, via reagent exchanges between micelles through the inter-micellar exchange.

XPS Study of Mn 2pp and 3s Satellite Structures of Heusler Alloys: NiMnSb, ppdMnSb, pptMnSb

  • Yang, See-Hun;Oh, Se-Jung;ppark, Je-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1994.02a
    • /
    • pp.50-50
    • /
    • 1994
  • Half-metallic Heusler alloys (NiMnSb, ppdMnSb, pptMnSb) have attracted much attention due to their unique electronic and magnetic structures. Sppin-ppolarized band structure calculation ppredicts metallic behavior for the majority sppin states and semiconductor behavior for the minority sppin states. We have studied the electronic structures of these half-metallic Heusler alloys by core-level pphotoemission sppectroscoppy of Mn 2pp and 3s XppS sppectra. We found large intensities of Mn 2pp satellites and 3s exchange spplitting comppared with other metal Mn-alloys. These satellite structure can be understood by applying Anderson imppurity model. This fact supports the calculated sppin pprojected ppartial density of states which suggests that the valence electrons be highly sppin ppolarized near Fermi level and that the electrons involved with charge-transfer be mainly minority sppin ones which have semiconducting band structure. The trend of charge transfer energies Δ from ligands (Sb 5pp) to Mn 3d, obtained from our model fitting, is consistent with that calculated from sppin pprojected ppartial density of state. Also the trend of d-d electron correlation energies U calculated from Mn Auger line L3 VV by Mg $K\alpha$ source is comppatible with that resulted from our model fitting. We fitted the Mn 3s curve in the same way as for insulating Mn comppounds by using the same pparameters calculated from Mn 2pp curve fitting exceppt for the Coulomb interaction energy Q between core hole and d-electrons. The 3s sppectra were analyzed by combing the charge transfer model and a simpple model taking into account the configuration mixing effect due to the intra-shell correlation. We found that the exchange interaction between 3s hole and 3d electrons is mainly respponsible for the satellite of Mn 3s sppectra. This is consistent with the neutron scattering data, which suggests local 3d magnetic moment. We find that the XppS analysis results of Mn 2pp and 3s satellite structures of half-metallic Heusler alloys are very similar to those of insulating transition metal comppounds.

  • PDF

Diffusion and Oxidation of Ti3+ Interstitials on a Reduced TiO2 (001) Surface: A Crystal-face Dependency (TiO2 (001)면에서 Ti 결함의 확산과 산화: 결정면에 대한 의존성)

  • Kim, Yu-Kwon
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.5
    • /
    • pp.242-248
    • /
    • 2012
  • Valence band of a vacuum-reduced $TiO_2$ (001) surface has been carefully examined using synchrotron x-ray photoelectron spectroscopy to investigate variation of the gap state upon oxidation and thermal diffusion of $Ti^{3+}$ interstitials from the bulk. We compare our results with that obtained from $TiO_2$ (110) and aim to address a crystal-face dependency in the oxidation and diffusion rates of $Ti^{3+}$ interstitials. We find very similar behaviors in the oxidation and thermal diffusion rate of $Ti^{3+}$ interstitials between the two crystal faces suggesting a negligible crystal-face dependency in this case.

Enhanced NH3-SCR Activity of V/TiO2 Catalyst Prepared by Various Ball Mill Method (다양한 Ball Mill Method에 의해 제조된 V/TiO2 촉매의 NH3-SCR 활성 증진연구)

  • Kim, Dong Ho;Seo, Phill Won;Hong, Sung Chang
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.64-72
    • /
    • 2017
  • In this study, the selective catalytic reduction (SCR) for NOx removal was investigated in the temperature range of $150{\sim}400^{\circ}C$. XRD, BET and XPS analyses to determine the structural properties and valence state characteristics of the catalyst were performed. Various ball mill method were shown to a difference in activity at a low temperature below $250^{\circ}C$. Based on the catalyst with the highest denitrification efficiency, the ball mill time was the best result at 3 h. As a result of XPS analysis, the presence of the non-stoichiometric vanadium species and the increase of the number of atoms were attributed to a positive effect in the SCR reaction. it was confirmed that the correlation between the amount of lattice oxygen and the denitrification efficiency through the $O_2$ on-off experiment, and it was in a proportional relationship to each other.