XPS Study of Mn 2pp and 3s Satellite Structures of Heusler Alloys: NiMnSb, ppdMnSb, pptMnSb

  • Yang, See-Hun (Deppartment of Physics, Seoul National University, Seoul) ;
  • Oh, Se-Jung (Deppartment of Physics, Seoul National University, Seoul) ;
  • ppark, Je-Geun (Deppartment of Physics, Impperial College, London)
  • Published : 1994.02.01

Abstract

Half-metallic Heusler alloys (NiMnSb, ppdMnSb, pptMnSb) have attracted much attention due to their unique electronic and magnetic structures. Sppin-ppolarized band structure calculation ppredicts metallic behavior for the majority sppin states and semiconductor behavior for the minority sppin states. We have studied the electronic structures of these half-metallic Heusler alloys by core-level pphotoemission sppectroscoppy of Mn 2pp and 3s XppS sppectra. We found large intensities of Mn 2pp satellites and 3s exchange spplitting comppared with other metal Mn-alloys. These satellite structure can be understood by applying Anderson imppurity model. This fact supports the calculated sppin pprojected ppartial density of states which suggests that the valence electrons be highly sppin ppolarized near Fermi level and that the electrons involved with charge-transfer be mainly minority sppin ones which have semiconducting band structure. The trend of charge transfer energies Δ from ligands (Sb 5pp) to Mn 3d, obtained from our model fitting, is consistent with that calculated from sppin pprojected ppartial density of state. Also the trend of d-d electron correlation energies U calculated from Mn Auger line L3 VV by Mg $K\alpha$ source is comppatible with that resulted from our model fitting. We fitted the Mn 3s curve in the same way as for insulating Mn comppounds by using the same pparameters calculated from Mn 2pp curve fitting exceppt for the Coulomb interaction energy Q between core hole and d-electrons. The 3s sppectra were analyzed by combing the charge transfer model and a simpple model taking into account the configuration mixing effect due to the intra-shell correlation. We found that the exchange interaction between 3s hole and 3d electrons is mainly respponsible for the satellite of Mn 3s sppectra. This is consistent with the neutron scattering data, which suggests local 3d magnetic moment. We find that the XppS analysis results of Mn 2pp and 3s satellite structures of half-metallic Heusler alloys are very similar to those of insulating transition metal comppounds.

Keywords