• Title/Summary/Keyword: vacuum tube

Search Result 236, Processing Time 0.034 seconds

Analysis on characteristics of vacuum preloaded air bearing (진공 예압형 공기베어링의 특성 해석)

  • 김경호;박천홍;이후상;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.355-358
    • /
    • 2003
  • This paper presents characteristics of vacuum preloaded porous air bearing. Pressure distribution of a porous pad and vacuum pocket are calculated. And load capacity and stiffness of the bearing are analyzed with various vacuum parameters, that is. clearance height. tube diameter, tube length. pumping speed of vacuum pump, vacuum pocket to porous pad area ratio. From the simulation results, optimum clearance for best performance can be selected adjusting these parameters, especially tube diameter which is the most dominant source.

  • PDF

Parametric Study on the Capacity of Vacuum Pump for Tube Structure (튜브열차 구조물의 진공 펌프 용량에 관한 파라메타 연구)

  • Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.516-520
    • /
    • 2010
  • Parametric study has been conducted to calculate the capacity of vacuum pump system that will be used to maintain the pressure of the tube structure under atmosphere level. Recently many railroad researchers pay attention to the tube train system as one of the super high speed transportation system. To achieve the super high speed, the inside of tube system should be maintained at low pressure level. In the low pressure environment, it is well known that air resistance of train is drastically decreased. Vacuum pump system will be used to make low pressure state for tube structure, exhaust the leakage air and supplement additional vacuum pumping. As results of these studies, we get the lump capacity of vacuum pump for various parameters. These results can be applied to analyze the effects of the reduction of air resistance.

A Study for Performance Improvements in the Coaxial Type Stirling Pulse Tube Cryocooler (동축형 스털링 맥동관 냉동기의 성능개선에 관한 연구)

  • Park, S.J.;Hong, Y.J.;Kim, H.B.;Kim, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1329-1334
    • /
    • 2004
  • The most compact and convenient pulse tube cryocooler for practical applications is the coaxial type. It can replace Stirling cryocooler without any change to the Dewar or the connection to the cooled devices. The experimental results of the coaxial inertance tube pulse tube cryocooler for cooling superconductor RF filter are presented in this paper. To find optimal conditions of inertance tube pulse tube cryocooler, no load temperature according to the variations of inertance tube volume, reservoir volume are measured, and the cool down characteristics at the particular conditions are presented. In case of the coaxial type inertance tube pulse tube refrigerator, cool down time is the lowest in the inertance tube diameter of 1.3 mm and inertance tube length of 1900 mm and lowest temperature is 112K. This results are not satisfactory for practical applications. So, We propose vacuum insulation between regenerator and pulse tube in the Stirling type coaxial pulse tube cryocooler. Stirling type coaxial pulse tube cryocooler with the vacuum insulation between regenerator and pulse tube was designed and manufactured by KIMM(Korea Institute of Machinery and Materials). The optimal conditions will be tested for Stirling type coaxial pulse tube cryocooler with the vacuum insulation between regenerator and pulse tube.

  • PDF

Cold Cathode 및 Pirani gauge Tube의 제작 및 특성조사

  • 오병훈;박미영;인상렬
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.43-43
    • /
    • 1999
  • Cold Cathode 및 Pirani Gauge Tube를 시험 제작하고 그 특성들을 조사하였다. 제작된 Cold Cathode Tube의 특성을 조사하기 위해 진공도에 따른 Anode 전압 및 방전 전류의 변화를 측정하였는데 기존의 제품들의 결과들과 비교.분석하여 개선 가능성을 제시하였다. 또한 20$\mu\textrm{m}$ 굵기의 백금선을 filament로 하는 Pirani gauge Tube를 제작하여 진공도에 따른 저항의 변화를 측정하였고 그 결과를 기존의 제품들의 결과와 비교하였다. 특히 본 연구에서는 시험 제작된 Cold Cathode 및 Pirani gauge Tube의 시험 결과를 토대로 국내 개발의 가능성을 논의하고 Gauge Controller의 설계방향 등을 제시할 것이다.

  • PDF

Development of a Plasma Training Lab kart: System Setup and Numerical Simulation

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.195-200
    • /
    • 2017
  • A mobile lab kart for plasma training is developed with a high vacuum pumping system, vacuum gauges and a glass discharge tube powered by a high voltage transformer connected to a household 60 Hz line. A numerical model is developed by using a commercial multiphysics software package, CFD-ACE+ to analyze the experimental data. Simulations for argon and nitrogen were carried out to provide fundamental discharge characteristics. Variations of the kart configuration were demonstrated: a glass tube with three electric probes, optical emission spectrometer attachment and infra red thermal imaging system to give more detailed analysis of the discharge characteristics.

Consideration on the Thickness of the Gas Introducing Tube of the Test Dome Specified in the ISO Standard (ISO 규격에서 규정한 표준용기 기체도입 도관의 직경에 대한 고찰)

  • In, S.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.161-168
    • /
    • 2010
  • The ISO standard specifies the diameter of the gas introducing tube to be definitely 1/10 of the chamber inner diameter of the standard test dome which is used for evaluating the performance of vacuum pumps. Because the inner diameter of the test chamber should not be less than the intake diameter of the vacuum pump, the tube diameter would be even 100 mm if fitting to a very large vacuum pump. Though such a thick tube can be accommodated in a large test dome, it is worthful to investigate whether a thicker tube is helpful or adverse for making more accurate measurements. In this paper it is discussed if there is an optimum tube diameter by comparing the isotropicity of particles emanating from the tube and that of particles entering the orifice.

Study on Performance Comparison for Solar Collectors with Single Evacuated Tube using Surface Treatment and Commercial Double Evacuated Tube (표면처리를 이용한 단일진공관과 기존 이중진공관 태양열집열기의 성능비교 연구)

  • Chun, Tae-Kyu;Yang, Young-Joon;Lee, Kyung-Hee;Ahn, Young-Chull
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.149-156
    • /
    • 2013
  • The performances of solar collectors with single and double evacuated tube were experimentally compared. The solar collector with single evacuated tube using surface treatment in this study consists of radiation fin, heat pipe, absorber plate, glass tube, cap and regulating valve, and so on. Surface treatment was conducted for heat pipe and absorber plate with black chrome plating and copper black coating. As the results, the performance of solar collector with single evacuated tube using surface treatment showed good results compared that of double evacuated tube. Absorber plate played a positive role in performance and showed increase of about 28%. Further performance depends on vacuum degree and vacuum degree has to be considered economical efficiency in solar collector.

Effect of Vacuum in a Non-glass Vacuum Tube on the thermal behavior of the Absorber Plate (비유리식(nonglass) 진공관의 진공도가 집열판의 열적 특성에 미치는 영향)

  • Oh, Seung-Jin;Hyun, Jun-Ho;Kim, Nam-Jin;Lee, Yoon-Joon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.67-73
    • /
    • 2008
  • This study has been carried out to investigate the effect of vacuum on the thermal performance of a nonglass evacuated tube. A series of measurements are made indoors to monitor the temperature change of the absorber plate contained in the evacuated tube under different conditions of vacuum and heat fluxes. Those temperatures measured at the thermal equilibrium could be used to assess the heat losses to the ambient in link with the steady operation of non-glass evacuated tubes for solar exploitation.

The prosperity and decay of vacuum tubes and it's current status (진공관의 흥망성쇠와 최근의 동향)

  • 조규심
    • Journal of the Korean Professional Engineers Association
    • /
    • v.30 no.3
    • /
    • pp.43-51
    • /
    • 1997
  • Vacuum tubes are electron tubes in which the motion of electrons are utilized. There are many kinds of vacuum tubes, e.g. diode tubes, triode tubes, pentodes. muti-tubes and etc. Generally accommodated in glass tube, its eletrodes can be seen easily from outside and it easy to understand. In 1884 Edison discovered a current flow in the vacuum tube. He could not, however, explain this phenomenon. This is called Edison effect. In 1904 Fleming developed the backup for the practical diode theory. The most important milestone in this early history of electronics came in 1906 when De Forest put a third electrode (a grid) into the above, and thus invented the triode tube. It is 90 years since the triode was invented by De Forest (as of 1996) and 100 years (centennial also as of 1996) since the specific electric change e/mo$_0$ ≒ 1.7589 ${\times}$ 1011 (C/kg) was confirmed by the English scientist Thomson in 1896. On the occasion of the 90th and 100th anniversary of these inventions and discovery, E would like to describe the rise and 1111 of the vacuum tubes and the current status of these tubes.

  • PDF