• 제목/요약/키워드: vaccine target

검색결과 76건 처리시간 0.028초

The Attenuation Mechanism and Live Vaccine Potential of a Low-Virulence Edwardsiella ictaluri Strain Obtained by Rifampicin Passaging Culture

  • Shuyi Wang;Jingwen Hao;Jicheng Yang;Qianqian Zhang;Aihua Li
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권2호
    • /
    • pp.167-179
    • /
    • 2023
  • The rifampicin-resistant strain E9-302 of Edwardsiella ictaluri strain 669 (WT) was generated by continuous passage on BHI agar plates containing increasing concentrations of rifampicin. E9-302 was attenuated significantly by 119 times to zebrafish Danio rerio compared to WT in terms of the 50% lethal dose (LD50). Zebrafish vaccinated with E9-302 via intraperitoneal (IP) injection at a dose of 1 × 103 CFU/fish had relative percentage survival (RPS) rates of 85.7% when challenged with wild-type E. ictaluri via IP 14 days post-vaccination (dpv). After 14 days of primary vaccination with E9-302 via immersion (IM) at a dose of 4 × 107 CFU/ml, a booster IM vaccination with E9-302 at a dose of 2 × 107 CFU/ml exhibited 65.2% RPS against challenge with wild-type E. ictaluri via IP 7 days later. These results indicated that the rifampicin-resistant attenuated strain E9-302 had potential as a live vaccine against E. ictaluri infection. A previously unreported amino acid site change at position 142 of the RNA polymerase (RNAP) β subunit encoded by the gene rpoB associated with rifampicin resistance was identified. Analysis of the whole-genome sequencing results revealed multiple missense mutations in the virulence-related genes esrB and sspH2 in E9-302 compared with WT, and a 189 bp mismatch in one gene, whose coding product was highly homologous to glycosyltransferase family 39 protein. This study preliminarily explored the molecular mechanism underlying the virulence attenuation of rifampicin-resistant strain E9-302 and provided a new target for the subsequent study of the pathogenic mechanism of E. ictaluri.

Efficacy of recombinant enolase as a candidate vaccine against Haemaphysalis longicornis tick infestation in mice

  • Md. Samiul Haque;Mohammad Saiful Islam;Myung-Jo You
    • Parasites, Hosts and Diseases
    • /
    • 제61권4호
    • /
    • pp.439-448
    • /
    • 2023
  • Tick infestation causes a significant threat to human and animal health, requiring effective immunological control methods. This study aimed to investigate the potential of recombinant Haemaphysalis longicornis enolase protein for tick vaccine development. The exact mechanism of the recently identified enolase protein from the H. longicornis Jeju strain remains poorly understood. Enolase plays a crucial role in glycolysis, the metabolic process that converts glucose into energy, and is essential for the motility, adhesion, invasion, growth, and differentiation of ticks. In this study, mice were immunized with recombinant enolase, and polyclonal antibodies were generated. Western blot analysis confirmed the specific recognition of enolase by the antiserum. The effects of immunization on tick feeding and attachment were assessed. Adult ticks attached to the recombinant enolase-immunized mice demonstrated longer attachment time, increased bloodsucking abilities, and lower engorgement weight than the controls. The nymphs and larvae had a reduced attachment rate and low engorgement rate compared to the controls. Mice immunized with recombinant enolase expressed in Escherichia coli displayed 90% efficacy in preventing tick infestation. The glycolytic nature of enolase and its involvement in crucial physiological processes makes it an attractive target for disrupting tick survival and disease transmission. Polyclonal antibodies recognize enolase and significantly reduce attachment rates, tick feeding, and engorgement. Our findings indicate that recombinant enolase may be a valuable vaccine candidate for H. longicornis infection in experimental murine model.

Antibiotic resistance in Neisseria gonorrhoeae: broad-spectrum drug target identification using subtractive genomics

  • Umairah Natasya Mohd Omeershffudin;Suresh Kumar
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.5.1-5.13
    • /
    • 2023
  • Neisseria gonorrhoeae is a Gram-negative aerobic diplococcus bacterium that primarily causes sexually transmitted infections through direct human sexual contact. It is a major public health threat due to its impact on reproductive health, the widespread presence of antimicrobial resistance, and the lack of a vaccine. In this study, we used a bioinformatics approach and performed subtractive genomic methods to identify potential drug targets against the core proteome of N. gonorrhoeae (12 strains). In total, 12,300 protein sequences were retrieved, and paralogous proteins were removed using CD-HIT. The remaining sequences were analyzed for non-homology against the human proteome and gut microbiota, and screened for broad-spectrum analysis, druggability, and anti-target analysis. The proteins were also characterized for unique interactions between the host and pathogen through metabolic pathway analysis. Based on the subtractive genomic approach and subcellular localization, we identified one cytoplasmic protein, 2Fe-2S iron-sulfur cluster binding domain-containing protein (NGFG RS03485), as a potential drug target. This protein could be further exploited for drug development to create new medications and therapeutic agents for the treatment of N. gonorrhoeae infections.

Development of mRNA Vaccines/Therapeutics and Their Delivery System

  • Sora Son;Kyuri Lee
    • Molecules and Cells
    • /
    • 제46권1호
    • /
    • pp.41-47
    • /
    • 2023
  • The rapid development of mRNA vaccines has contributed to the management of the current coronavirus disease 2019 (COVID-19) pandemic, suggesting that this technology may be used to manage future outbreaks of infectious diseases. Because the antigens targeted by mRNA vaccines can be easily altered by simply changing the sequence present in the coding region of mRNA structures, it is more appropriate to develop vaccines, especially during rapidly developing outbreaks of infectious diseases. In addition to allowing rapid development, mRNA vaccines have great potential in inducing successful antigen-specific immunity by expressing target antigens in cells and simultaneously triggering immune responses. Indeed, the two COVID-19 mRNA vaccines approved by the U.S. Food and Drug Administration have shown significant efficacy in preventing infections. The ability of mRNAs to produce target proteins that are defective in specific diseases has enabled the development of options to treat intractable diseases. Clinical applications of mRNA vaccines/therapeutics require strategies to safely deliver the RNA molecules into targeted cells. The present review summarizes current knowledge about mRNA vaccines/ therapeutics, their clinical applications, and their delivery strategies.

In silico detection and characterization of novel virulence proteins of the emerging poultry pathogen Gallibacterium anatis

  • L. G. T. G. Rajapaksha;C. W. R. Gunasekara;P. S. de Alwis
    • Genomics & Informatics
    • /
    • 제20권4호
    • /
    • pp.41.1-41.9
    • /
    • 2022
  • The pathogen Gallibacterium anatis has caused heavy economic losses for commercial poultry farms around the world. However, despite its importance, the functions of its hypothetical proteins (HPs) have been poorly characterized. The present study analyzed the functions and structures of HPs obtained from Gallibacterium anatis (NCTC11413) using various bioinformatics tools. Initially, all the functions of HPs were predicted using the VICMpred tool, and the physicochemical properties of the identified virulence proteins were then analyzed using Expasy's ProtParam server. A virulence protein (WP_013745346.1) that can act as a potential drug target was further analyzed for its secondary structure, followed by homology modeling and three-dimensional (3D) structure determination using the Swiss-Model and Phyre2 servers. The quality assessment and validation of the 3D model were conducted using ERRAT, Verify3D, and PROCHECK programs. The functional and phylogenetic analysis was conducted using ProFunc, STRING, KEGG servers, and MEGA software. The bioinformatics analysis revealed 201 HPs related to cellular processes (n = 119), metabolism (n = 61), virulence (n = 11), and information/storage molecules (n = 10). Among the virulence proteins, three were detected as drug targets and six as vaccine targets. The characterized virulence protein WP_013745346.1 is proven to be stable, a drug target, and an enzyme related to the citrate cycle in the present pathogen. This enzyme was also found to facilitate other metabolic pathways, the biosynthesis of secondary metabolites, and the biosynthesis of amino acids.

Oncolytic Vaccinia Virus Expressing 4-1BBL Inhibits Tumor Growth by Increasing CD8+ T Cells in B16F10 Tumor Model

  • Lee, Na-Kyung;Kim, Hong-Sung
    • 대한의생명과학회지
    • /
    • 제18권3호
    • /
    • pp.210-217
    • /
    • 2012
  • Oncolytic viral vectors have shown good candidates for cancer treatment but have many limitations. To improve the therapeutic potential of oncolytic vaccinia virus, we developed a recombinant vaccinia virus expressing the 4-1BBL co-stimulatory molecule or CCL21. 4-1BBL and CCL21 expression was identified by FACS analysis and immunoblotting. rV-4-1BBL vaccination shows significant tumor regression compared to rV-LacZ, but rV-CCL21 shows rapid tumor growth compared to rV-LacZ in the poorly immunogenic B16 murine melanoma model. 4-1BBL expression resulted in the increase of the number of CD8+ T cells and especially the increase of effector (CD62L-CD44+) CD8+ T cells. These data suggest 4-1BBL may be the potential target for enhancement of tumor immunotherapy.

Prophylactic and Therapeutic Applications of Genetic Materials Carrying Viral Apoptotic Function

  • Yang Joo-Sung
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2002년도 추계학술대회
    • /
    • pp.118-120
    • /
    • 2002
  • Genetic materials including DNA plasmid are effective delivery vehicle to express interesting gene efficiently and safely not to generate replication competent virus. Moreover, it has advantages to design a better vector and to simplify manufacturing and storage condition. To understand a possible pathogenic mechanism by a flavivirus, West Nile virus (WNV), WNV genome sequence was aligned to other pathogenic viral genome. Interestingly, WNV capsid (Cp) amino acid sequence has some homology to HIV-l Vpr protein. These proteins induce apoptosis in human cell lines as well as in vivo and cell cycle arrest. Therefore, DNA plasmid carrying apoptosis-inducing and cell cycle arresting viral proteins including a HIV-1 Vpr and a WNV Cp protein can be useful for anti-cancer therapeutic applications. This WNV Cp protein is an early expressed protein which can be a reasonable target antigen (Ag) for vaccine design. Immunization of a DNA construct encoding WNV Cp protein induces a strong Ag-specific humoral and Th1-type immune responses in animal. Therefore, DNA plasmid encoding apoptotic viral proteins can be useful tool for therapeutic and prophylactic applications.

  • PDF

Tablet PC를 이용한 차세대 텔레메틱스 플랫폼 전략과 이를 응용한 비즈니스 모델에 관한 연구 (A Study of Telematics Platform Realizatipn Strategy & Business Modelusing Tablet PC System)

  • 김세중;김태규
    • 경영과정보연구
    • /
    • 제15권
    • /
    • pp.187-222
    • /
    • 2004
  • The existing fixed telematics facilities for car were restricting of efficiency, utilization, communication, possibility, so it become disconnected with reality in the domestic and foreign market within thy near future, like as the case of 'car-phone'. It is too difficult to make a various business model on the restrict basis. To solve these problems, We suggested Tablet PC system as a new mobile telematics platform. The telematics platform based on the Tablet PC realize the perfect office, because it shows an excellent portability, high power and extension, various input equipment, and environment of communication in the car. To realize this concreteness, it needs a proper marketing strategy for a new business model. For this purpose, We analyzed the structure of industry, selected a proper target market, and established the strategy of marketing. Additionally, We proposed new business models ; particularly Portal site, Car-Home network, Car Software Tuning, and T-Vaccine(Intelligent Car Inspection System). These are made possible by the only Tablet PC platform.

  • PDF

천연식물자원 활용 코로나19 억제 치료제 개발 (Development of Drug Candidates based on Natural Products Against COVID-19)

  • 강세찬
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2021년도 춘계학술대회
    • /
    • pp.3-3
    • /
    • 2021
  • The ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not only influenced over 1.26 billion people but also caused 2.77 million deaths worldwide (as of March 28, 2021). The vaccination could be the most efficient strategy to prevent SARS-CoV-2 infection. However, the continuous emergence of novel variants such as VUI-202012/01 (United Kingdom) and 501.V2 (South Africa) raises huge concerns about the effectiveness of the vaccine designed to target the original virus strain. Since ancient times regardless of the East and West, the plants which refered in this presentation have been consumed not only as food but also as a natural medicine to treat diverse diseases including infectious diseases. Importantly, these plants contain secondary metabolites that display antiviral activity involved in the inhibition of viral adsorption, penetration, and replication. Also, plant-derived natural medicines are expected to have a wider range of efficacy and fewer side effects than synthetic medicine, discovering novel plant-based viral agents would be a promising strategy to fight against SARS-CoV-2.

  • PDF

Factors Influencing Vaccination in Korea: Findings From Focus Group Interviews

  • Park, Bomi;Choi, Eun Jeong;Park, Bohyun;Han, Hyejin;Cho, Su Jin;Choi, Hee Jung;Lee, Seonhwa;Park, Hyesook
    • Journal of Preventive Medicine and Public Health
    • /
    • 제51권4호
    • /
    • pp.173-180
    • /
    • 2018
  • Objectives: Immunization is considered one of the most successful and cost-effective public health interventions protecting communities from preventable infectious diseases. The Korean government set up a dedicated workforce for national immunization in 2003, and since then has made strides in improving vaccination coverage across the nation. However, some groups remain relatively vulnerable and require intervention, and it is necessary to address unmet needs to prevent outbreaks of communicable diseases. This study was conducted to characterize persistent challenges to vaccination. Methods: The study adopted a qualitative method in accordance with the Consolidated Criteria for Reporting Qualitative Research checklist. Three focus group interviews were conducted with 15 professionals in charge of vaccination-related duties. The interviews were conducted according to a semi-structured guideline, and thematic analysis was carried out. Data saturation was confirmed when the researchers agreed that no more new codes could be found. Results: A total of 4 main topics and 11 subtopics were introduced regarding barriers to vaccination. The main topics were vaccine hesitancy, personal circumstances, lack of information, and misclassification. Among them, vaccine hesitancy was confirmed to be the most significant factor impeding vaccination. It was also found that the factors hindering vaccination had changed over time and disproportionately affected certain groups. Conclusions: The study identified ongoing unmet needs and barriers to vaccination despite the accomplishments of the National Immunization Program. The results have implications for establishing tailored interventions that target context- and group-specific barriers to improve timely and complete vaccination coverage.