DOI QR코드

DOI QR Code

Efficacy of recombinant enolase as a candidate vaccine against Haemaphysalis longicornis tick infestation in mice

  • Md. Samiul Haque (Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-safety Research Center, Jeonbuk National University, Specialized Campus) ;
  • Mohammad Saiful Islam (Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-safety Research Center, Jeonbuk National University, Specialized Campus) ;
  • Myung-Jo You (Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-safety Research Center, Jeonbuk National University, Specialized Campus)
  • Received : 2023.06.24
  • Accepted : 2023.10.16
  • Published : 2023.11.30

Abstract

Tick infestation causes a significant threat to human and animal health, requiring effective immunological control methods. This study aimed to investigate the potential of recombinant Haemaphysalis longicornis enolase protein for tick vaccine development. The exact mechanism of the recently identified enolase protein from the H. longicornis Jeju strain remains poorly understood. Enolase plays a crucial role in glycolysis, the metabolic process that converts glucose into energy, and is essential for the motility, adhesion, invasion, growth, and differentiation of ticks. In this study, mice were immunized with recombinant enolase, and polyclonal antibodies were generated. Western blot analysis confirmed the specific recognition of enolase by the antiserum. The effects of immunization on tick feeding and attachment were assessed. Adult ticks attached to the recombinant enolase-immunized mice demonstrated longer attachment time, increased bloodsucking abilities, and lower engorgement weight than the controls. The nymphs and larvae had a reduced attachment rate and low engorgement rate compared to the controls. Mice immunized with recombinant enolase expressed in Escherichia coli displayed 90% efficacy in preventing tick infestation. The glycolytic nature of enolase and its involvement in crucial physiological processes makes it an attractive target for disrupting tick survival and disease transmission. Polyclonal antibodies recognize enolase and significantly reduce attachment rates, tick feeding, and engorgement. Our findings indicate that recombinant enolase may be a valuable vaccine candidate for H. longicornis infection in experimental murine model.

Keywords

Acknowledgement

This research was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (grant number: 320005-4).

References

  1. Fujisaki K. Development of acquired resistance precipitating antibody in rabbits experimentally infested with females of Haemaphysalis longicornis (Ixodoidea: Ixodidae). Natl Inst Anim Health Q (Tokyo). 1978;18(1):27-38.
  2. Fujisaki K, Kawazu S, Kamio T. The taxonomy of the bovine Theileria spp. Parasitol Today 1994;10(1):31-33. https://doi.org/10.1016/0169-4758(94)90355-7
  3. Wikel SK, Osburn RL. Immune responsiveness of the bovine host to repeated low-level infestations with Dermacentor andersoni. Ann Trop Med Parasitol 1982;76(4):405-414. https://doi.org/10.1080/00034983.1982.11687563
  4. Wikel SK, Whelen AC. Ixodid-host immune interaction. Identification and characterization of relevant antigens and tickinduced host immunosuppression. Vet Parasitol 1986;20(1-3):149-174. https://doi.org/10.1016/0304-4017(86)90098-1
  5. Willadsen P. Immunity to ticks. Adv Parasitol 1980;18:293-311. https://doi.org/10.1016/s0065-308x(08)60402-9
  6. Nikpay A, Nabian S. Immunization of cattle with tick salivary gland extracts. J Arthropod Borne Dis 2016;10(3):281-290.
  7. Popara M, Villar M, Mateos-Hernandez L, de Mera IG, Marina A, et al. Lesser protein degradation machinery correlates with higher BM86 tick vaccine efficacy in Rhipicephalus annulatus when compared to Rhipicephalus microplus. Vaccine 2013;31(42):4728-4735. https://doi.org/10.1016/j.vaccine.2013.08.031
  8. de la Fuente J, Rodriguez M, Montero C, Redondo M, GarciaGarcia JC, et al. Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine GavacTM. Genet Anal 1999;15(3-5):143-148. https://doi.org/10.1016/s1050-3862(99)00018-2
  9. de la Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshine DE. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci 2008;13:6938-6946. https://doi.org/10.2741/3200
  10. Kusakisako K, Miyata T, Fujisaki K, Tanaka T. Host immunization with recombinant tick antigen and evaluation of host immune response. Methods Mol Biol 2022;2411:331-341. https://doi.org/10.1007/978-1-0716-1888-2_19
  11. Carreon D, de la Lastra JM, Almazan C, Canales M, Ruiz-Fons F, et al. Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer. Vaccine 2012;30(2):273-279. https://doi.org/10.1016/j.vaccine.2011.10.099
  12. Parthasarathi BC, Kumar B, Ghosh S. Current status and future prospects of multi-antigen tick vaccine. J Vector Borne Dis 2021;58(3):183-192. https://doi.org/10.4103/0972-9062.321739
  13. Andreotti R. Performance of two Bm86 antigen vaccin formulation against tick using crossbreed bovines in stall test. Rev Bras Parasitol Vet 2006;15(3):97-100.
  14. Maruyama SR, Garcia GR, Teixeira FR, Brandao LG, Anderson JM, et al. Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations. Parasit Vectors 2017;10(1):206. https://doi.org/10.1186/s13071-017-2136-2
  15. de la Fuente J, Almazan C, Canales M, Perez de la Lastra JM, Kocan KM, Willadsen P. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim Health Res Rev 2007;8(1):23-28. https://doi.org/10.1017/s1466252307001193
  16. Riding GA, Jarmey J, McKenna RV, Pearson R, Cobon GS, Willadsen P. A protective "concealed" antigen from Boophilus microplus. Purification, localization, and possible function. J Immunol 1994;153(11):5158-5166. https://doi.org/10.4049/jimmunol.153.11.5158
  17. Sahibi H, Rhalem A, Barriga OO. Comparative immunizing power of infections, salivary extracts, and intestinal extracts of Hyalomma marginatum marginatum in cattle. Vet Parasitol 1997;68(4):359-366. https://doi.org/10.1016/s0304-4017(96)01082-5
  18. Mi R, Yang X, Huang Y, Cheng L, Lu K, et al. Immunolocation and enzyme activity analysis of Cryptosporidium parvum enolase. Parasit Vectors 2017;10(1):273. https://doi.org/10.1186/s13071-017-2200-y
  19. You M, Xuan X, Tsuji N, Kamio T, Igarashi I, et al. Molecular characterization of a troponin I-like protein from the hard tick Haemaphysalis longicornis. Insect Biochem Mol Biol 2001;32(1):67-73. https://doi.org/10.1016/s0965-1748(01)00081-9
  20. Tiffin HS, Rajotte EG, Sakamoto JM, Machtinger ET. Tick control in a connected world: challenges, solutions, and public policy from a United States border perspective. Trop Med Infect Dis 2022;7(11):388. https://doi.org/10.3390/tropicalmed7110388
  21. Obaid MK, Islam N, Alouffi A, Khan AZ, da Silva Vaz I Jr, et al. Acaricides resistance in ticks: selection, diagnosis, mechanisms, and mitigation. Front Cell Infect Microbiol 2022;12:941831. https://doi.org/10.3389/fcimb.2022.941831
  22. Bouazzaoui A, Abdellatif AAH, Al-Allaf FA, Bogari NM, Al-Dehlawi S, et al. Strategies for vaccination: conventional vaccine approaches versus new-generation strategies in combination with adjuvants. Pharmaceutics 2021;13(2):140. https://doi.org/10.3390/pharmaceutics13020140
  23. Merino O, Antunes S, Mosqueda J, Moreno-Cid JA, Perez de la Lastra JM, et al. Vaccination with proteins involved in tickpathogen interactions reduces vector infestations and pathogen infection. Vaccine 2013;31(49):5889-5896. https://doi.org/10.1016/j.vaccine.2013.09.037
  24. Diaz-Ramos A, Roig-Borrellas A, Garcia-Melero A, LopezAlemany R. α-Enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol 2012;2012:156795. https://doi.org/10.1155/2012/156795
  25. Ayon-Nunez DA, Fragoso G, Bobes RJ, Laclette JP. Plasminogen-binding proteins as an evasion mechanism of the host's innate immunity in infectious diseases. Biosci Rep 2018;38(5):BSR20180705. https://doi.org/10.1042/bsr20180705
  26. Chen N, Yuan ZG, Xu MJ, Zhou DH, Zhang XX, et al. Ascaris suum enolase is a potential vaccine candidate against ascariasis. Vaccine 2012;30(23):3478-3482. https://doi.org/10.1016/j.vaccine.2012.02.075
  27. Dutta S, DasSarma P, DasSarma S, Jarori GK. Immunogenicity and protective potential of a Plasmodium spp. enolase peptide displayed on archaeal gas vesicle nanoparticles. Malar J 2015;14:406. https://doi.org/10.1186/s12936-015-0914-x
  28. Ghosh AK, Coppens I, Gardsvoll H, Ploug M, Jacobs-Lorena M. Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut. Proc Natl Acad Sci USA 2011;108(41):17153-17158. https://doi.org/10.1073/pnas.1103657108
  29. Diaz-Martin V, Manzano-Roman R, Oleaga A, Encinas-Grandes A, Perez-Sanchez R. Cloning and characterization of a plasminogen-binding enolase from the saliva of the argasid tick Ornithodoros moubata. Vet Parasitol 2013;191(3-4):301-314. https://doi.org/10.1016/j.vetpar.2012.09.019
  30. Xu XL, Cheng TY, Yang H. Enolase, a plasminogen receptor isolated from salivary gland transcriptome of the ixodid tick Haemaphysalis flava. Parasitol Res 2016;115(5):1955-1964. https://doi.org/10.1007/s00436-016-4938-0
  31. Keller A, Peltzer J, Carpentier G, Horvath I, Olah J, et al. Interactions of enolase isoforms with tubulin and microtubules during myogenesis. Biochim Biophys Acta 2007;1770(6):919-926. https://doi.org/10.1016/j.bbagen.2007.01.015
  32. Floden AM, Watt JA, Brissette CA. Borrelia burgdorferi enolase is a surface-exposed plasminogen binding protein. PLoS One 2011;6(11):e27502. https://doi.org/10.1371/journal.pone.0027502
  33. Liu X, Zheng C, Gao X, Chen J, Zheng K. Complete molecular and immunoprotective characterization of Babesia microti enolase. Front Microbiol 2017;8:622. https://doi.org/10.3389/fmicb.2017.00622
  34. de la Fuente J, Contreras M. Tick vaccines: current status and future directions. Expert Rev Vaccines 2015;14(10):1367-1376. https://doi.org/10.1586/14760584.2015.1076339